结合地形和反射率指数,更好地探测地表水

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Journal of Hydro-environment Research Pub Date : 2024-01-01 DOI:10.1016/j.jher.2024.01.001
Yuanming Hu, Jisoo Lee, Kyungrock Paik
{"title":"结合地形和反射率指数,更好地探测地表水","authors":"Yuanming Hu,&nbsp;Jisoo Lee,&nbsp;Kyungrock Paik","doi":"10.1016/j.jher.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Since the Normalized Difference Water Index (NDWI) was proposed, water indices have served as useful tools for surface water detection. However, existing water indices are highly influenced by atmospheric and other environmental conditions and suffer from limited performance, especially in urban areas. At the core of the limitation is the sole dependency on the spectral distribution of reflectance signals. To overcome this, we propose to utilize topographic data as additional information for better water detection. Accordingly, the new index, namely Combined Water Index (CWI), is developed as the product of the topographic index and the reflectance-based index. These two indices excellently compensate each other: the former is free from noise issues but invariant over time while the latter can capture temporal dynamics of waterbody extents. The CWI is applied to four study areas of different development levels (natural, medium-sized cities, and megalopolis) in the Han River basin, South Korea. The water detection results of the CWI is promising, particularly in the heavily developed urban setting, demonstrated through visual images as well as various statistical measures.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"52 ","pages":"Pages 38-49"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining topography and reflectance indices for better surface water detection\",\"authors\":\"Yuanming Hu,&nbsp;Jisoo Lee,&nbsp;Kyungrock Paik\",\"doi\":\"10.1016/j.jher.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the Normalized Difference Water Index (NDWI) was proposed, water indices have served as useful tools for surface water detection. However, existing water indices are highly influenced by atmospheric and other environmental conditions and suffer from limited performance, especially in urban areas. At the core of the limitation is the sole dependency on the spectral distribution of reflectance signals. To overcome this, we propose to utilize topographic data as additional information for better water detection. Accordingly, the new index, namely Combined Water Index (CWI), is developed as the product of the topographic index and the reflectance-based index. These two indices excellently compensate each other: the former is free from noise issues but invariant over time while the latter can capture temporal dynamics of waterbody extents. The CWI is applied to four study areas of different development levels (natural, medium-sized cities, and megalopolis) in the Han River basin, South Korea. The water detection results of the CWI is promising, particularly in the heavily developed urban setting, demonstrated through visual images as well as various statistical measures.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"52 \",\"pages\":\"Pages 38-49\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644324000017\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644324000017","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

自归一化差异水指数(NDWI)提出以来,水指数一直是地表水探测的有用工具。然而,现有的水指数受大气和其他环境条件的影响很大,性能有限,尤其是在城市地区。这种局限性的核心是完全依赖于反射信号的光谱分布。为了克服这一问题,我们建议利用地形数据作为附加信息,以更好地检测水。因此,我们开发了新的指数,即综合水指数(CWI),并将其应用于汉江流域四个不同发展水平的研究区域(自然、中等城市和特大城市)。CWI 是地形指数和基于反射率的指数的乘积。这两个指数可以很好地相互弥补:前者不受噪声问题的影响,但随时间变化而不变,而后者则可以捕捉水体范围的时间动态变化。CWI 的水体探测结果很有希望,尤其是在高度发达的城市环境中,这一点已通过视觉图像和各种统计指标得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining topography and reflectance indices for better surface water detection

Since the Normalized Difference Water Index (NDWI) was proposed, water indices have served as useful tools for surface water detection. However, existing water indices are highly influenced by atmospheric and other environmental conditions and suffer from limited performance, especially in urban areas. At the core of the limitation is the sole dependency on the spectral distribution of reflectance signals. To overcome this, we propose to utilize topographic data as additional information for better water detection. Accordingly, the new index, namely Combined Water Index (CWI), is developed as the product of the topographic index and the reflectance-based index. These two indices excellently compensate each other: the former is free from noise issues but invariant over time while the latter can capture temporal dynamics of waterbody extents. The CWI is applied to four study areas of different development levels (natural, medium-sized cities, and megalopolis) in the Han River basin, South Korea. The water detection results of the CWI is promising, particularly in the heavily developed urban setting, demonstrated through visual images as well as various statistical measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
期刊最新文献
Spatial and temporal variations in temperature and precipitation trends in South Korea over the past half-century (1974–2023) using innovative trend analysis Kinetic energy budgets of triple-components in a cylinder wake Editorial Board Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1