Huseyin Burak Disli, Harun Hizlisoy, Candan Gungor, Mukaddes Barel, Adalet Dishan, Dursun Alp Gundog, Serhat Al, Nurhan Ertas Onmaz, Yeliz Yildirim, Zafer Gonulalan
{"title":"图尔基耶牛屠宰场分离出的阿里卡菌属的调查和特征描述。","authors":"Huseyin Burak Disli, Harun Hizlisoy, Candan Gungor, Mukaddes Barel, Adalet Dishan, Dursun Alp Gundog, Serhat Al, Nurhan Ertas Onmaz, Yeliz Yildirim, Zafer Gonulalan","doi":"10.1007/s10123-023-00478-3","DOIUrl":null,"url":null,"abstract":"<p><p>Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1321-1332"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye.\",\"authors\":\"Huseyin Burak Disli, Harun Hizlisoy, Candan Gungor, Mukaddes Barel, Adalet Dishan, Dursun Alp Gundog, Serhat Al, Nurhan Ertas Onmaz, Yeliz Yildirim, Zafer Gonulalan\",\"doi\":\"10.1007/s10123-023-00478-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"1321-1332\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-023-00478-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00478-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye.
Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.