在高真空中为铝接触 MoSe2 晶体管设计氧化钛夹层

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2024-01-11 DOI:10.1016/j.mee.2024.112139
Yoobin Oh, Youngho Jo, Woong Choi
{"title":"在高真空中为铝接触 MoSe2 晶体管设计氧化钛夹层","authors":"Yoobin Oh,&nbsp;Youngho Jo,&nbsp;Woong Choi","doi":"10.1016/j.mee.2024.112139","DOIUrl":null,"url":null,"abstract":"<div><p>We present an enhanced performance of MoSe<sub>2</sub> transistors via sequentially depositing Ti and Al in high vacuum to establish TiO<sub>x</sub><span> interlayers positioned between the MoSe</span><sub>2</sub><span> channel and Ti/Al contacts. Transmission electron microscopy analysis revealed the presence of TiO</span><sub>x</sub> at the MoSe<sub>2</sub>/Ti interface. While MoSe<sub>2</sub> transistors exhibited poor device performance in the absence of a TiO<sub>x</sub> interlayer, the introduction of a TiO<sub>x</sub> interlayer yielded a notable transistor performance, including an on/off ratio of ∼10<sup>5</sup>, a field-effect mobility of ∼40 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup><span>, and a contact resistance of ∼100 kΩ μm. These enhancements were attributed to the beneficial effects of Fermi level unpinning and interfacial doping facilitated by TiO</span><sub>x</sub> interlayers. These results underscore the feasibility of incorporating TiO<sub>x</sub> interlayers to enable the use of conventional Al contacts in MoSe<sub>2</sub><span> transistors, delivering significant implications for enhancing the performance of transition metal dichalcogenide transistors.</span></p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering TiOx interlayers in high vacuum for Al-contacted MoSe2 transistors\",\"authors\":\"Yoobin Oh,&nbsp;Youngho Jo,&nbsp;Woong Choi\",\"doi\":\"10.1016/j.mee.2024.112139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an enhanced performance of MoSe<sub>2</sub> transistors via sequentially depositing Ti and Al in high vacuum to establish TiO<sub>x</sub><span> interlayers positioned between the MoSe</span><sub>2</sub><span> channel and Ti/Al contacts. Transmission electron microscopy analysis revealed the presence of TiO</span><sub>x</sub> at the MoSe<sub>2</sub>/Ti interface. While MoSe<sub>2</sub> transistors exhibited poor device performance in the absence of a TiO<sub>x</sub> interlayer, the introduction of a TiO<sub>x</sub> interlayer yielded a notable transistor performance, including an on/off ratio of ∼10<sup>5</sup>, a field-effect mobility of ∼40 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup><span>, and a contact resistance of ∼100 kΩ μm. These enhancements were attributed to the beneficial effects of Fermi level unpinning and interfacial doping facilitated by TiO</span><sub>x</sub> interlayers. These results underscore the feasibility of incorporating TiO<sub>x</sub> interlayers to enable the use of conventional Al contacts in MoSe<sub>2</sub><span> transistors, delivering significant implications for enhancing the performance of transition metal dichalcogenide transistors.</span></p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016793172400008X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016793172400008X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们通过在高真空中依次沉积钛和铝,在 MoSe2 沟道和钛/铝触点之间形成 TiOx 夹层,从而提高了 MoSe2 晶体管的性能。透射电子显微镜分析表明,MoSe2/Ti 界面存在氧化钛。在没有 TiOx 中间膜的情况下,MoSe2 晶体管的器件性能较差,而引入 TiOx 中间膜后,晶体管的性能显著提高,其中包括约 105 的导通/关断比、约 40 cm2 V-1 s-1 的场效应迁移率以及约 100 kΩ μm 的接触电阻。这些性能的提高归因于费米级解宁和钛氧化物夹层促进的界面掺杂的有利影响。这些结果强调了在 MoSe2 晶体管中加入 TiOx 夹层以使用传统铝触点的可行性,对提高过渡金属二卤化晶体管的性能具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering TiOx interlayers in high vacuum for Al-contacted MoSe2 transistors

We present an enhanced performance of MoSe2 transistors via sequentially depositing Ti and Al in high vacuum to establish TiOx interlayers positioned between the MoSe2 channel and Ti/Al contacts. Transmission electron microscopy analysis revealed the presence of TiOx at the MoSe2/Ti interface. While MoSe2 transistors exhibited poor device performance in the absence of a TiOx interlayer, the introduction of a TiOx interlayer yielded a notable transistor performance, including an on/off ratio of ∼105, a field-effect mobility of ∼40 cm2 V−1 s−1, and a contact resistance of ∼100 kΩ μm. These enhancements were attributed to the beneficial effects of Fermi level unpinning and interfacial doping facilitated by TiOx interlayers. These results underscore the feasibility of incorporating TiOx interlayers to enable the use of conventional Al contacts in MoSe2 transistors, delivering significant implications for enhancing the performance of transition metal dichalcogenide transistors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Editorial Board High density nanofluidic channels by self-sealing for metallic nanoparticles detection Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1