Sara El-Ateif, Ali Idri, José Luis Fernández-Alemán
{"title":"利用 CT 和胸部 X 射线单模态和多模态诊断 COVID-19 的 CNN 与视觉变换器之间的差异","authors":"Sara El-Ateif, Ali Idri, José Luis Fernández-Alemán","doi":"10.1108/dta-01-2023-0005","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>COVID-19 continues to spread, and cause increasing deaths. Physicians diagnose COVID-19 using not only real-time polymerase chain reaction but also the computed tomography (CT) and chest x-ray (CXR) modalities, depending on the stage of infection. However, with so many patients and so few doctors, it has become difficult to keep abreast of the disease. Deep learning models have been developed in order to assist in this respect, and vision transformers are currently state-of-the-art methods, but most techniques currently focus only on one modality (CXR).</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This work aims to leverage the benefits of both CT and CXR to improve COVID-19 diagnosis. This paper studies the differences between using convolutional MobileNetV2, ViT DeiT and Swin Transformer models when training from scratch and pretraining on the MedNIST medical dataset rather than the ImageNet dataset of natural images. The comparison is made by reporting six performance metrics, the Scott–Knott Effect Size Difference, Wilcoxon statistical test and the Borda Count method. We also use the Grad-CAM algorithm to study the model's interpretability. Finally, the model's robustness is tested by evaluating it on Gaussian noised images.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Although pretrained MobileNetV2 was the best model in terms of performance, the best model in terms of performance, interpretability, and robustness to noise is the trained from scratch Swin Transformer using the CXR (accuracy = 93.21 per cent) and CT (accuracy = 94.14 per cent) modalities.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Models compared are pretrained on MedNIST and leverage both the CT and CXR modalities.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"54 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the differences between CNNs and vision transformers for COVID-19 diagnosis using CT and chest x-ray mono- and multimodality\",\"authors\":\"Sara El-Ateif, Ali Idri, José Luis Fernández-Alemán\",\"doi\":\"10.1108/dta-01-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>COVID-19 continues to spread, and cause increasing deaths. Physicians diagnose COVID-19 using not only real-time polymerase chain reaction but also the computed tomography (CT) and chest x-ray (CXR) modalities, depending on the stage of infection. However, with so many patients and so few doctors, it has become difficult to keep abreast of the disease. Deep learning models have been developed in order to assist in this respect, and vision transformers are currently state-of-the-art methods, but most techniques currently focus only on one modality (CXR).</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This work aims to leverage the benefits of both CT and CXR to improve COVID-19 diagnosis. This paper studies the differences between using convolutional MobileNetV2, ViT DeiT and Swin Transformer models when training from scratch and pretraining on the MedNIST medical dataset rather than the ImageNet dataset of natural images. The comparison is made by reporting six performance metrics, the Scott–Knott Effect Size Difference, Wilcoxon statistical test and the Borda Count method. We also use the Grad-CAM algorithm to study the model's interpretability. Finally, the model's robustness is tested by evaluating it on Gaussian noised images.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Although pretrained MobileNetV2 was the best model in terms of performance, the best model in terms of performance, interpretability, and robustness to noise is the trained from scratch Swin Transformer using the CXR (accuracy = 93.21 per cent) and CT (accuracy = 94.14 per cent) modalities.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Models compared are pretrained on MedNIST and leverage both the CT and CXR modalities.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-01-2023-0005\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-01-2023-0005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
On the differences between CNNs and vision transformers for COVID-19 diagnosis using CT and chest x-ray mono- and multimodality
Purpose
COVID-19 continues to spread, and cause increasing deaths. Physicians diagnose COVID-19 using not only real-time polymerase chain reaction but also the computed tomography (CT) and chest x-ray (CXR) modalities, depending on the stage of infection. However, with so many patients and so few doctors, it has become difficult to keep abreast of the disease. Deep learning models have been developed in order to assist in this respect, and vision transformers are currently state-of-the-art methods, but most techniques currently focus only on one modality (CXR).
Design/methodology/approach
This work aims to leverage the benefits of both CT and CXR to improve COVID-19 diagnosis. This paper studies the differences between using convolutional MobileNetV2, ViT DeiT and Swin Transformer models when training from scratch and pretraining on the MedNIST medical dataset rather than the ImageNet dataset of natural images. The comparison is made by reporting six performance metrics, the Scott–Knott Effect Size Difference, Wilcoxon statistical test and the Borda Count method. We also use the Grad-CAM algorithm to study the model's interpretability. Finally, the model's robustness is tested by evaluating it on Gaussian noised images.
Findings
Although pretrained MobileNetV2 was the best model in terms of performance, the best model in terms of performance, interpretability, and robustness to noise is the trained from scratch Swin Transformer using the CXR (accuracy = 93.21 per cent) and CT (accuracy = 94.14 per cent) modalities.
Originality/value
Models compared are pretrained on MedNIST and leverage both the CT and CXR modalities.