揭示 Anoikis 相关基因:膀胱癌预后的突破性进展

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-11 DOI:10.1002/jgm.3651
Shen Jiang, Xiping Yang, Yang Lin, Yunfei Liu, Lisa Jia Tran, Jing Zhang, Chengjun Qiu, Fangdie Ye, Zhou Sun
{"title":"揭示 Anoikis 相关基因:膀胱癌预后的突破性进展","authors":"Shen Jiang,&nbsp;Xiping Yang,&nbsp;Yang Lin,&nbsp;Yunfei Liu,&nbsp;Lisa Jia Tran,&nbsp;Jing Zhang,&nbsp;Chengjun Qiu,&nbsp;Fangdie Ye,&nbsp;Zhou Sun","doi":"10.1002/jgm.3651","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Bladder cancer (BLCA) is a prevalent malignancy worldwide. Anoikis remains a new form of cell death. It is necessary to explore Anoikis-related genes in the prognosis of BLCA.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We obtained RNA expression profiles from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases for dimensionality reduction analysis and isolated epithelial cells, T cells and fibroblasts for copy number variation analysis, pseudotime analysis and transcription factor analysis based on R package. We integrated machine-learning algorithms to develop the artificial intelligence-derived prognostic signature (AIDPS).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The performance of AIDPS with clinical indicators was stable and robust in predicting BLCA and showed better performance in every validation dataset compared to other models. Mendelian randomization analysis was conducted. Single nucleotide polymorphism (SNP) sites of rs3100578 (HK2) and rs66467677 (HSP90B1) exhibited significant correlation of bladder problem (not cancer) and bladder cancer, whereasSNP sites of rs3100578 (HK2) and rs947939 (BAD) had correlation between bladder stone and bladder cancer. The immune infiltration analysis of the TCGA-BLCA cohort was calculated via the ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) algorithm which contains stromal, immune and estimate scores. We also found significant differences in the IC<sub>50</sub> values of Bortezomib_1191, Docetaxel_1007, Staurosporine_1034 and Rapamycin_1084 among the high- and low-risk groups.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>In conclusion, these findings indicated Anoikis-related prognostic genes in BLCA and constructed an innovative machine-learning model of AIDPS with high prognostic value for BLCA.</p>\n </section>\n </div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Anoikis-related genes: A breakthrough in the prognosis of bladder cancer\",\"authors\":\"Shen Jiang,&nbsp;Xiping Yang,&nbsp;Yang Lin,&nbsp;Yunfei Liu,&nbsp;Lisa Jia Tran,&nbsp;Jing Zhang,&nbsp;Chengjun Qiu,&nbsp;Fangdie Ye,&nbsp;Zhou Sun\",\"doi\":\"10.1002/jgm.3651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Bladder cancer (BLCA) is a prevalent malignancy worldwide. Anoikis remains a new form of cell death. It is necessary to explore Anoikis-related genes in the prognosis of BLCA.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We obtained RNA expression profiles from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases for dimensionality reduction analysis and isolated epithelial cells, T cells and fibroblasts for copy number variation analysis, pseudotime analysis and transcription factor analysis based on R package. We integrated machine-learning algorithms to develop the artificial intelligence-derived prognostic signature (AIDPS).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The performance of AIDPS with clinical indicators was stable and robust in predicting BLCA and showed better performance in every validation dataset compared to other models. Mendelian randomization analysis was conducted. Single nucleotide polymorphism (SNP) sites of rs3100578 (HK2) and rs66467677 (HSP90B1) exhibited significant correlation of bladder problem (not cancer) and bladder cancer, whereasSNP sites of rs3100578 (HK2) and rs947939 (BAD) had correlation between bladder stone and bladder cancer. The immune infiltration analysis of the TCGA-BLCA cohort was calculated via the ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) algorithm which contains stromal, immune and estimate scores. We also found significant differences in the IC<sub>50</sub> values of Bortezomib_1191, Docetaxel_1007, Staurosporine_1034 and Rapamycin_1084 among the high- and low-risk groups.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>In conclusion, these findings indicated Anoikis-related prognostic genes in BLCA and constructed an innovative machine-learning model of AIDPS with high prognostic value for BLCA.</p>\\n </section>\\n </div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3651\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3651","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

背景 膀胱癌(BLCA)是一种全球流行的恶性肿瘤。Anoikis仍然是一种新的细胞死亡形式。有必要研究与 Anoikis 相关的基因对 BLCA 预后的影响。 方法 我们从癌症基因组图谱(The Cancer Genome Atlas,TCGA)和基因表达总库(Gene Expression Omnibus)数据库中获取 RNA 表达谱进行降维分析,并分离上皮细胞、T 细胞和成纤维细胞进行拷贝数变异分析、伪时间分析和基于 R 软件包的转录因子分析。我们整合了机器学习算法,开发了人工智能衍生预后特征(AIDPS)。 结果 AIDPS与临床指标相结合,在预测BLCA方面表现稳定、稳健,与其他模型相比,AIDPS在每个验证数据集中都表现出更好的性能。进行了孟德尔随机分析。rs3100578(HK2)和rs66467677(HSP90B1)的单核苷酸多态性(SNP)位点与膀胱问题(非癌症)和膀胱癌有显著相关性,而rs3100578(HK2)和rs947939(BAD)的SNP位点与膀胱结石和膀胱癌有相关性。TCGA-BLCA队列的免疫浸润分析是通过ESTIMATE(即使用表达数据估算恶性肿瘤中的基质和免疫细胞)算法计算得出的,该算法包含基质、免疫和估算分数。我们还发现,硼替佐米_1191、多西他赛_1007、Staurosporine_1034 和雷帕霉素_1084 的 IC50 值在高风险组和低风险组之间存在明显差异。 结论 总之,这些研究结果表明了 BLCA 中与 Anoikis 相关的预后基因,并构建了一个创新的 AIDPS 机器学习模型,该模型对 BLCA 具有较高的预后价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling Anoikis-related genes: A breakthrough in the prognosis of bladder cancer

Background

Bladder cancer (BLCA) is a prevalent malignancy worldwide. Anoikis remains a new form of cell death. It is necessary to explore Anoikis-related genes in the prognosis of BLCA.

Methods

We obtained RNA expression profiles from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases for dimensionality reduction analysis and isolated epithelial cells, T cells and fibroblasts for copy number variation analysis, pseudotime analysis and transcription factor analysis based on R package. We integrated machine-learning algorithms to develop the artificial intelligence-derived prognostic signature (AIDPS).

Results

The performance of AIDPS with clinical indicators was stable and robust in predicting BLCA and showed better performance in every validation dataset compared to other models. Mendelian randomization analysis was conducted. Single nucleotide polymorphism (SNP) sites of rs3100578 (HK2) and rs66467677 (HSP90B1) exhibited significant correlation of bladder problem (not cancer) and bladder cancer, whereasSNP sites of rs3100578 (HK2) and rs947939 (BAD) had correlation between bladder stone and bladder cancer. The immune infiltration analysis of the TCGA-BLCA cohort was calculated via the ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) algorithm which contains stromal, immune and estimate scores. We also found significant differences in the IC50 values of Bortezomib_1191, Docetaxel_1007, Staurosporine_1034 and Rapamycin_1084 among the high- and low-risk groups.

Conclusions

In conclusion, these findings indicated Anoikis-related prognostic genes in BLCA and constructed an innovative machine-learning model of AIDPS with high prognostic value for BLCA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1