{"title":"用于卫星应用的新型宽带高增益紧凑型环形微带天线","authors":"Vivek Arya, Tanuj K. Garg","doi":"10.1515/freq-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a novel compact design of an annular ring microstrip antenna (ARMSA), which has two stacked annular rings and is fabricated on a FR4 substrate for radar and satellite applications. The presence of different kinds of slots made the design of the recommended antenna very unique for Ku band applications. This novel compact structure of the antenna provided enhanced bandwidth and high gain. The suggested antenna works in Ku band and has 2.70 GHz bandwidth and 8.42 dB gain, which makes it suitable for satellite applications. The quality parameters of the proposed annular ring microstrip antenna have been compared with other existing annular ring microstrip antennas, which shows its efficient performance.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"50 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel broadband and high-gain compact annular ring microstrip antenna for satellite applications\",\"authors\":\"Vivek Arya, Tanuj K. Garg\",\"doi\":\"10.1515/freq-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a novel compact design of an annular ring microstrip antenna (ARMSA), which has two stacked annular rings and is fabricated on a FR4 substrate for radar and satellite applications. The presence of different kinds of slots made the design of the recommended antenna very unique for Ku band applications. This novel compact structure of the antenna provided enhanced bandwidth and high gain. The suggested antenna works in Ku band and has 2.70 GHz bandwidth and 8.42 dB gain, which makes it suitable for satellite applications. The quality parameters of the proposed annular ring microstrip antenna have been compared with other existing annular ring microstrip antennas, which shows its efficient performance.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"50 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2023-0102\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
摘要 本文介绍了一种新颖紧凑的环形微带天线(ARMSA)设计,它有两个堆叠的环形,在 FR4 基板上制造,用于雷达和卫星应用。不同类型槽的存在使所推荐的天线设计在 Ku 波段应用中非常独特。这种新颖紧凑的天线结构提供了更高的带宽和增益。建议的天线工作在 Ku 波段,带宽为 2.70 GHz,增益为 8.42 dB,适合卫星应用。所建议的环形微带天线的质量参数与其他现有环形微带天线进行了比较,显示出其高效的性能。
A novel broadband and high-gain compact annular ring microstrip antenna for satellite applications
Abstract This article presents a novel compact design of an annular ring microstrip antenna (ARMSA), which has two stacked annular rings and is fabricated on a FR4 substrate for radar and satellite applications. The presence of different kinds of slots made the design of the recommended antenna very unique for Ku band applications. This novel compact structure of the antenna provided enhanced bandwidth and high gain. The suggested antenna works in Ku band and has 2.70 GHz bandwidth and 8.42 dB gain, which makes it suitable for satellite applications. The quality parameters of the proposed annular ring microstrip antenna have been compared with other existing annular ring microstrip antennas, which shows its efficient performance.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.