普通剪切链接的机械特性和影响因素

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2024-01-09 DOI:10.3390/buildings14010160
Shujun Hu, Shangwen Liu, Sizhi Zeng, Tiefeng Shao
{"title":"普通剪切链接的机械特性和影响因素","authors":"Shujun Hu, Shangwen Liu, Sizhi Zeng, Tiefeng Shao","doi":"10.3390/buildings14010160","DOIUrl":null,"url":null,"abstract":"The current specification requires the same limiting values of inelastic rotation and the overstrength factor for shear links with a length ratio less than 1.6. However, recent studies have shown that the mechanical properties of ordinary shear links with a length ratio ranging from 1.0 to 1.6 are obviously different from those of very short shear links with a length ratio less than 1.0. Additionally, shear links made of different steel materials have differences in mechanical properties. Based on Q345 steel, three ordinary shear links with a length ratio of 1.36 were designed to intensively explore the influence of stiffener configurations and spacing on mechanical properties. Under cyclic loading tests, the failure modes, hysteresis curves, skeleton curves, secant stiffness curves and energy dissipation capacities of shear link specimens were recorded. The results show that the overstrength factor and inelastic rotation of specimens SL-1 and SL-2, which had different stiffener configurations, reached 1.59 and 0.10, while those of specimen SL-3, which had wider stiffener spacing, reached 1.48 and 0.07, which showed that varying the stiffener configuration has no obvious effect, while relaxing stiffener spacing can result in severe buckling of the web. Additionally, its bearing capacity, inelastic rotation, secant stiffness and energy dissipation capacity reduced. Hence, the stiffener spacing should satisfy the requirements of the specification and not be too wide. Based on ABAQUS software, finite element models of ordinary shear links proved to be accurately consistent with test specimens in terms of mechanical properties. On this basis, 114 numerical models of ordinary shear links with different length ratios, stiffener spacings, flange-to-web area ratios, flange strengths, web depth-to-thickness ratios and stiffener thicknesses were designed to study the influence on the overstrength factor.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"48 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties and Influence Factors of Ordinary Shear Links\",\"authors\":\"Shujun Hu, Shangwen Liu, Sizhi Zeng, Tiefeng Shao\",\"doi\":\"10.3390/buildings14010160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current specification requires the same limiting values of inelastic rotation and the overstrength factor for shear links with a length ratio less than 1.6. However, recent studies have shown that the mechanical properties of ordinary shear links with a length ratio ranging from 1.0 to 1.6 are obviously different from those of very short shear links with a length ratio less than 1.0. Additionally, shear links made of different steel materials have differences in mechanical properties. Based on Q345 steel, three ordinary shear links with a length ratio of 1.36 were designed to intensively explore the influence of stiffener configurations and spacing on mechanical properties. Under cyclic loading tests, the failure modes, hysteresis curves, skeleton curves, secant stiffness curves and energy dissipation capacities of shear link specimens were recorded. The results show that the overstrength factor and inelastic rotation of specimens SL-1 and SL-2, which had different stiffener configurations, reached 1.59 and 0.10, while those of specimen SL-3, which had wider stiffener spacing, reached 1.48 and 0.07, which showed that varying the stiffener configuration has no obvious effect, while relaxing stiffener spacing can result in severe buckling of the web. Additionally, its bearing capacity, inelastic rotation, secant stiffness and energy dissipation capacity reduced. Hence, the stiffener spacing should satisfy the requirements of the specification and not be too wide. Based on ABAQUS software, finite element models of ordinary shear links proved to be accurately consistent with test specimens in terms of mechanical properties. On this basis, 114 numerical models of ordinary shear links with different length ratios, stiffener spacings, flange-to-web area ratios, flange strengths, web depth-to-thickness ratios and stiffener thicknesses were designed to study the influence on the overstrength factor.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"48 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010160\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010160","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

现行规范要求长度比小于 1.6 的剪力连接件具有相同的非弹性旋转极限值和超强度系数。然而,最近的研究表明,长度比在 1.0 至 1.6 之间的普通剪力连接件与长度比小于 1.0 的超短剪力连接件的机械性能明显不同。此外,由不同钢材制成的剪力链接在机械性能上也存在差异。以 Q345 钢为基础,设计了三个长度比为 1.36 的普通剪力链接,以深入探讨加劲件配置和间距对力学性能的影响。在循环加载试验中,记录了剪力链接试样的破坏模式、滞后曲线、骨架曲线、秒刚度曲线和耗能能力。结果表明,不同加劲件配置的试样 SL-1 和 SL-2 的超强系数和非弹性转动系数分别达到了 1.59 和 0.10,而加劲件间距较宽的试样 SL-3 的超强系数和非弹性转动系数分别达到了 1.48 和 0.07,这表明改变加劲件配置没有明显影响,而放宽加劲件间距会导致腹板严重屈曲。此外,其承载能力、非弹性转动、正弦刚度和耗能能力也会降低。因此,加强筋间距应满足规范要求,且不能过宽。基于 ABAQUS 软件,普通剪力链接的有限元模型在力学性能方面被证明与试样精确一致。在此基础上,设计了 114 个具有不同长度比、加劲件间距、翼缘与腹板面积比、翼缘强度、腹板深度与厚度比和加劲件厚度的普通剪力连接件数值模型,以研究其对超强系数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Properties and Influence Factors of Ordinary Shear Links
The current specification requires the same limiting values of inelastic rotation and the overstrength factor for shear links with a length ratio less than 1.6. However, recent studies have shown that the mechanical properties of ordinary shear links with a length ratio ranging from 1.0 to 1.6 are obviously different from those of very short shear links with a length ratio less than 1.0. Additionally, shear links made of different steel materials have differences in mechanical properties. Based on Q345 steel, three ordinary shear links with a length ratio of 1.36 were designed to intensively explore the influence of stiffener configurations and spacing on mechanical properties. Under cyclic loading tests, the failure modes, hysteresis curves, skeleton curves, secant stiffness curves and energy dissipation capacities of shear link specimens were recorded. The results show that the overstrength factor and inelastic rotation of specimens SL-1 and SL-2, which had different stiffener configurations, reached 1.59 and 0.10, while those of specimen SL-3, which had wider stiffener spacing, reached 1.48 and 0.07, which showed that varying the stiffener configuration has no obvious effect, while relaxing stiffener spacing can result in severe buckling of the web. Additionally, its bearing capacity, inelastic rotation, secant stiffness and energy dissipation capacity reduced. Hence, the stiffener spacing should satisfy the requirements of the specification and not be too wide. Based on ABAQUS software, finite element models of ordinary shear links proved to be accurately consistent with test specimens in terms of mechanical properties. On this basis, 114 numerical models of ordinary shear links with different length ratios, stiffener spacings, flange-to-web area ratios, flange strengths, web depth-to-thickness ratios and stiffener thicknesses were designed to study the influence on the overstrength factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms Investigation on Seismic Behavior of Prestressed Steel Strand Composite Reinforced High-Strength Concrete Column A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1