Bowen Liu, Yonghe Wu, Hang Shu, Yongpeng Cui, Can Zuo, Wenhao Li
{"title":"揭示行为对自主学习能力的预测作用","authors":"Bowen Liu, Yonghe Wu, Hang Shu, Yongpeng Cui, Can Zuo, Wenhao Li","doi":"10.1111/bjet.13427","DOIUrl":null,"url":null,"abstract":"<p>Self-direction has become an important skill in the 21st century. To cultivate learners with a high level of self-direction, it is necessary to diagnose their self-directed learning (SDL) ability. This study diagnosed and predicted learners' SDL ability based on their actual SDL behaviours. The study was performed in a self-directed 3D design class lasting 90 minutes. A total of 193 middle school students participated in the study. The results of the Pearson correlation analysis (<i>p</i> < 0.001) showed that the reported perception of SDL ability was significantly correlated with SDL behaviours. The results of the hierarchical multiple linear regression analysis showed that the SDL behaviours explained 84.9% of the variance in SDL ability (adjusted <i>R</i><sup>2</sup> = 0.849, <i>p</i> < 0.001). Therefore, SDL behaviours had significant predictive effects on the reported perception of SDL ability. Moreover, based on the random forest algorithm, the study built an SDL ability prediction model with high performance (accuracy = 0.83, precision = 0.82, recall = 0.84) using SDL behaviours as features. The study provides evidence for the design of effective strategies to enhance SDL ability and promote SDL behaviours.\n </p>","PeriodicalId":48315,"journal":{"name":"British Journal of Educational Technology","volume":"55 3","pages":"1231-1252"},"PeriodicalIF":6.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the predictive effect of behaviours on self-directed learning ability\",\"authors\":\"Bowen Liu, Yonghe Wu, Hang Shu, Yongpeng Cui, Can Zuo, Wenhao Li\",\"doi\":\"10.1111/bjet.13427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-direction has become an important skill in the 21st century. To cultivate learners with a high level of self-direction, it is necessary to diagnose their self-directed learning (SDL) ability. This study diagnosed and predicted learners' SDL ability based on their actual SDL behaviours. The study was performed in a self-directed 3D design class lasting 90 minutes. A total of 193 middle school students participated in the study. The results of the Pearson correlation analysis (<i>p</i> < 0.001) showed that the reported perception of SDL ability was significantly correlated with SDL behaviours. The results of the hierarchical multiple linear regression analysis showed that the SDL behaviours explained 84.9% of the variance in SDL ability (adjusted <i>R</i><sup>2</sup> = 0.849, <i>p</i> < 0.001). Therefore, SDL behaviours had significant predictive effects on the reported perception of SDL ability. Moreover, based on the random forest algorithm, the study built an SDL ability prediction model with high performance (accuracy = 0.83, precision = 0.82, recall = 0.84) using SDL behaviours as features. The study provides evidence for the design of effective strategies to enhance SDL ability and promote SDL behaviours.\\n </p>\",\"PeriodicalId\":48315,\"journal\":{\"name\":\"British Journal of Educational Technology\",\"volume\":\"55 3\",\"pages\":\"1231-1252\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Educational Technology\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bjet.13427\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Educational Technology","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bjet.13427","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Uncovering the predictive effect of behaviours on self-directed learning ability
Self-direction has become an important skill in the 21st century. To cultivate learners with a high level of self-direction, it is necessary to diagnose their self-directed learning (SDL) ability. This study diagnosed and predicted learners' SDL ability based on their actual SDL behaviours. The study was performed in a self-directed 3D design class lasting 90 minutes. A total of 193 middle school students participated in the study. The results of the Pearson correlation analysis (p < 0.001) showed that the reported perception of SDL ability was significantly correlated with SDL behaviours. The results of the hierarchical multiple linear regression analysis showed that the SDL behaviours explained 84.9% of the variance in SDL ability (adjusted R2 = 0.849, p < 0.001). Therefore, SDL behaviours had significant predictive effects on the reported perception of SDL ability. Moreover, based on the random forest algorithm, the study built an SDL ability prediction model with high performance (accuracy = 0.83, precision = 0.82, recall = 0.84) using SDL behaviours as features. The study provides evidence for the design of effective strategies to enhance SDL ability and promote SDL behaviours.
期刊介绍:
BJET is a primary source for academics and professionals in the fields of digital educational and training technology throughout the world. The Journal is published by Wiley on behalf of The British Educational Research Association (BERA). It publishes theoretical perspectives, methodological developments and high quality empirical research that demonstrate whether and how applications of instructional/educational technology systems, networks, tools and resources lead to improvements in formal and non-formal education at all levels, from early years through to higher, technical and vocational education, professional development and corporate training.