Juan Acosta, E. Bojórquez, J. Bojórquez, A. Reyes-Salazar, J. Ruiz-García, Sonia E. Ruiz, Ivano Iovinella
{"title":"不同配置的偏心支撑框架系统钢结构建筑的抗震性能","authors":"Juan Acosta, E. Bojórquez, J. Bojórquez, A. Reyes-Salazar, J. Ruiz-García, Sonia E. Ruiz, Ivano Iovinella","doi":"10.3390/buildings14010118","DOIUrl":null,"url":null,"abstract":"Although eccentrically braced frames (EBFs) can be used with different configurations according to architectural requirements, it has not yet been indicated which configuration has a better seismic performance; therefore, this paper presents an analytical study focused on evaluating the seismic behavior of various steel buildings with EBF systems, factoring in different configurations. Furthermore, the objective is to compare the performances of EBF systems with one another, to learn more about their structural efficiency. The results obtained indicate that seismic response, in terms of peak interstory drifts, depends on the structural period and hysteretic behavior of the links, because high levels of plastic rotation increase lateral displacement. In addition, it was observed that maximum drift demands are concentrated in the lower floors where the links exhibit inelastic behavior, while the level of interstory drift decreases as height increases.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"133 34","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Performance of Steel Buildings with Eccentrically Braced Frame Systems with Different Configurations\",\"authors\":\"Juan Acosta, E. Bojórquez, J. Bojórquez, A. Reyes-Salazar, J. Ruiz-García, Sonia E. Ruiz, Ivano Iovinella\",\"doi\":\"10.3390/buildings14010118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although eccentrically braced frames (EBFs) can be used with different configurations according to architectural requirements, it has not yet been indicated which configuration has a better seismic performance; therefore, this paper presents an analytical study focused on evaluating the seismic behavior of various steel buildings with EBF systems, factoring in different configurations. Furthermore, the objective is to compare the performances of EBF systems with one another, to learn more about their structural efficiency. The results obtained indicate that seismic response, in terms of peak interstory drifts, depends on the structural period and hysteretic behavior of the links, because high levels of plastic rotation increase lateral displacement. In addition, it was observed that maximum drift demands are concentrated in the lower floors where the links exhibit inelastic behavior, while the level of interstory drift decreases as height increases.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"133 34\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010118\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010118","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Seismic Performance of Steel Buildings with Eccentrically Braced Frame Systems with Different Configurations
Although eccentrically braced frames (EBFs) can be used with different configurations according to architectural requirements, it has not yet been indicated which configuration has a better seismic performance; therefore, this paper presents an analytical study focused on evaluating the seismic behavior of various steel buildings with EBF systems, factoring in different configurations. Furthermore, the objective is to compare the performances of EBF systems with one another, to learn more about their structural efficiency. The results obtained indicate that seismic response, in terms of peak interstory drifts, depends on the structural period and hysteretic behavior of the links, because high levels of plastic rotation increase lateral displacement. In addition, it was observed that maximum drift demands are concentrated in the lower floors where the links exhibit inelastic behavior, while the level of interstory drift decreases as height increases.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates