{"title":"基于强化学习的公路自动驾驶汽车控制综述","authors":"","doi":"10.1016/j.geits.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomous driving is an active area of research in artificial intelligence and robotics. Recent advances in deep reinforcement learning (DRL) show promise for training autonomous vehicles to handle complex real-world driving tasks. This paper reviews recent advancement on the application of DRL to highway lane change, ramp merge, and platoon coordination. In particular, similarities, differences, limitations, and best practices regarding the DRL formulations, DRL training algorithms, simulations, and metrics are reviewed and discussed. The paper starts by reviewing different traffic scenarios that are discussed by the literature, followed by a thorough review on the DRL technology such as the state representation methods that capture interactive dynamics critical for safe and efficient merging and the reward formulations that manage key metrics like safety, efficiency, comfort, and adaptability. Insights from this review can guide future research toward realizing the potential of DRL for automated driving in complex traffic under uncertainty.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"3 4","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773153724000082/pdfft?md5=c58a7142127b320882e70443e8d65385&pid=1-s2.0-S2773153724000082-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review on reinforcement learning-based highway autonomous vehicle control\",\"authors\":\"\",\"doi\":\"10.1016/j.geits.2024.100156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autonomous driving is an active area of research in artificial intelligence and robotics. Recent advances in deep reinforcement learning (DRL) show promise for training autonomous vehicles to handle complex real-world driving tasks. This paper reviews recent advancement on the application of DRL to highway lane change, ramp merge, and platoon coordination. In particular, similarities, differences, limitations, and best practices regarding the DRL formulations, DRL training algorithms, simulations, and metrics are reviewed and discussed. The paper starts by reviewing different traffic scenarios that are discussed by the literature, followed by a thorough review on the DRL technology such as the state representation methods that capture interactive dynamics critical for safe and efficient merging and the reward formulations that manage key metrics like safety, efficiency, comfort, and adaptability. Insights from this review can guide future research toward realizing the potential of DRL for automated driving in complex traffic under uncertainty.</p></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"3 4\",\"pages\":\"Article 100156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000082/pdfft?md5=c58a7142127b320882e70443e8d65385&pid=1-s2.0-S2773153724000082-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review on reinforcement learning-based highway autonomous vehicle control
Autonomous driving is an active area of research in artificial intelligence and robotics. Recent advances in deep reinforcement learning (DRL) show promise for training autonomous vehicles to handle complex real-world driving tasks. This paper reviews recent advancement on the application of DRL to highway lane change, ramp merge, and platoon coordination. In particular, similarities, differences, limitations, and best practices regarding the DRL formulations, DRL training algorithms, simulations, and metrics are reviewed and discussed. The paper starts by reviewing different traffic scenarios that are discussed by the literature, followed by a thorough review on the DRL technology such as the state representation methods that capture interactive dynamics critical for safe and efficient merging and the reward formulations that manage key metrics like safety, efficiency, comfort, and adaptability. Insights from this review can guide future research toward realizing the potential of DRL for automated driving in complex traffic under uncertainty.