用于带预览的前馈控制的控制相关神经网络:应用于工业平板打印机

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-01-09 DOI:10.1016/j.ifacsc.2024.100241
Leontine Aarnoudse , Johan Kon , Wataru Ohnishi , Maurice Poot , Paul Tacx , Nard Strijbosch , Tom Oomen
{"title":"用于带预览的前馈控制的控制相关神经网络:应用于工业平板打印机","authors":"Leontine Aarnoudse ,&nbsp;Johan Kon ,&nbsp;Wataru Ohnishi ,&nbsp;Maurice Poot ,&nbsp;Paul Tacx ,&nbsp;Nard Strijbosch ,&nbsp;Tom Oomen","doi":"10.1016/j.ifacsc.2024.100241","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100241"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601824000026/pdfft?md5=4202aaa66e7d1736bf952129d8b99de9&pid=1-s2.0-S2468601824000026-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer\",\"authors\":\"Leontine Aarnoudse ,&nbsp;Johan Kon ,&nbsp;Wataru Ohnishi ,&nbsp;Maurice Poot ,&nbsp;Paul Tacx ,&nbsp;Nard Strijbosch ,&nbsp;Tom Oomen\",\"doi\":\"10.1016/j.ifacsc.2024.100241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"27 \",\"pages\":\"Article 100241\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000026/pdfft?md5=4202aaa66e7d1736bf952129d8b99de9&pid=1-s2.0-S2468601824000026-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

前馈控制的性能在很大程度上取决于其补偿可重现干扰的能力。本文旨在为用于前馈控制的人工神经网络(ANN)开发一个系统框架。该方法涉及三个方面:强调闭环控制目标的新标准;包含处理延迟和非最小相位动态的预览;以及使用迭代学习算法生成训练数据,以解决泛化误差问题。该方法通过在工业平板打印机上的模拟和实验进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer

The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
On the turnpike to design of deep neural networks: Explicit depth bounds Finite-time event-triggered tracking control for quadcopter attitude systems with zero compensation technology Efficiency criteria and dual techniques for some nonconvex multiple cost minimization models Analysis of Hyers–Ulam stability and controllability of non-linear switched impulsive systems with delays on time scales Design of fixed-time sliding mode control using variable exponents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1