计算力学中的深度学习:综述

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-01-13 DOI:10.1007/s00466-023-02434-4
Leon Herrmann, Stefan Kollmannsberger
{"title":"计算力学中的深度学习:综述","authors":"Leon Herrmann, Stefan Kollmannsberger","doi":"10.1007/s00466-023-02434-4","DOIUrl":null,"url":null,"abstract":"<p>The rapid growth of deep learning research, including within the field of computational mechanics, has resulted in an extensive and diverse body of literature. To help researchers identify key concepts and promising methodologies within this field, we provide an overview of deep learning in deterministic computational mechanics. Five main categories are identified and explored: simulation substitution, simulation enhancement, discretizations as neural networks, generative approaches, and deep reinforcement learning. This review focuses on deep learning methods rather than applications for computational mechanics, thereby enabling researchers to explore this field more effectively. As such, the review is not necessarily aimed at researchers with extensive knowledge of deep learning—instead, the primary audience is researchers on the verge of entering this field or those attempting to gain an overview of deep learning in computational mechanics. The discussed concepts are, therefore, explained as simple as possible.\n</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"40 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning in computational mechanics: a review\",\"authors\":\"Leon Herrmann, Stefan Kollmannsberger\",\"doi\":\"10.1007/s00466-023-02434-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid growth of deep learning research, including within the field of computational mechanics, has resulted in an extensive and diverse body of literature. To help researchers identify key concepts and promising methodologies within this field, we provide an overview of deep learning in deterministic computational mechanics. Five main categories are identified and explored: simulation substitution, simulation enhancement, discretizations as neural networks, generative approaches, and deep reinforcement learning. This review focuses on deep learning methods rather than applications for computational mechanics, thereby enabling researchers to explore this field more effectively. As such, the review is not necessarily aimed at researchers with extensive knowledge of deep learning—instead, the primary audience is researchers on the verge of entering this field or those attempting to gain an overview of deep learning in computational mechanics. The discussed concepts are, therefore, explained as simple as possible.\\n</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-023-02434-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-023-02434-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习研究(包括计算力学领域的研究)的快速发展产生了大量不同的文献。为了帮助研究人员识别该领域的关键概念和有前途的方法,我们概述了确定性计算力学中的深度学习。我们确定并探讨了五个主要类别:模拟替代、模拟增强、离散化作为神经网络、生成方法和深度强化学习。本综述侧重于深度学习方法,而不是计算力学的应用,从而使研究人员能够更有效地探索这一领域。因此,这篇综述并不一定面向对深度学习有广泛了解的研究人员--相反,主要读者是即将进入这一领域的研究人员或试图获得深度学习在计算力学中的概述的研究人员。因此,本文对所讨论的概念进行了尽可能简单的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning in computational mechanics: a review

The rapid growth of deep learning research, including within the field of computational mechanics, has resulted in an extensive and diverse body of literature. To help researchers identify key concepts and promising methodologies within this field, we provide an overview of deep learning in deterministic computational mechanics. Five main categories are identified and explored: simulation substitution, simulation enhancement, discretizations as neural networks, generative approaches, and deep reinforcement learning. This review focuses on deep learning methods rather than applications for computational mechanics, thereby enabling researchers to explore this field more effectively. As such, the review is not necessarily aimed at researchers with extensive knowledge of deep learning—instead, the primary audience is researchers on the verge of entering this field or those attempting to gain an overview of deep learning in computational mechanics. The discussed concepts are, therefore, explained as simple as possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1