Christian M. Schott, Peter M. Schneider, Kais Sadraoui, Kun-Ting Song, Batyr Garlyyev, Sebastian A. Watzele, Jan Michalička, Jan M. Macak, Arnaud Viola, Frédéric Maillard, Anatoliy Senyshyn, Johannes A. Fischer, Aliaksandr S. Bandarenka, Elena L. Gubanova
{"title":"自上而下无表面活性剂合成支撑钯纳米结构催化剂","authors":"Christian M. Schott, Peter M. Schneider, Kais Sadraoui, Kun-Ting Song, Batyr Garlyyev, Sebastian A. Watzele, Jan Michalička, Jan M. Macak, Arnaud Viola, Frédéric Maillard, Anatoliy Senyshyn, Johannes A. Fischer, Aliaksandr S. Bandarenka, Elena L. Gubanova","doi":"10.1002/smsc.202300241","DOIUrl":null,"url":null,"abstract":"Nanostructured palladium (Pd) is a universal catalyst that is widely used in applications ranging from catalytic converters of combustion engine cars to hydrogenation catalysts in industrial processes. Standard protocols for synthesizing such nanoparticles (NPs) typically use bottom-up approaches. They utilize special and often expensive physical techniques or wet-chemical methods requiring organic surfactants. These surfactants should often be removed before catalytic applications. In this article, the synthesis of Pd NPs immobilized on carbon support by electrochemical erosion without using any surfactants or toxic materials is reported. The Pd NPs synthesis essentially relies on a Pd bulk pretreatment, which causes material embrittlement and allows the erosion process to evolve more efficiently, producing homogeneously distributed NPs on the support. Moreover, the synthesized catalyst is tested for hydrogen evolution reaction. The activity evaluations identify optimal synthesis parameters related to the erosion procedure. The electrocatalytic properties of the Pd NPs produced with sizes down to 6.4 ± 2.9 nm are compared with a commercially available Pd/C catalyst. The synthesized catalyst outperforms the commercial catalyst within all properties, like specific surface area, geometric activity, mass activity, specific activity, and durability.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"54 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top-down Surfactant-Free Synthesis of Supported Palladium-Nanostructured Catalysts\",\"authors\":\"Christian M. Schott, Peter M. Schneider, Kais Sadraoui, Kun-Ting Song, Batyr Garlyyev, Sebastian A. Watzele, Jan Michalička, Jan M. Macak, Arnaud Viola, Frédéric Maillard, Anatoliy Senyshyn, Johannes A. Fischer, Aliaksandr S. Bandarenka, Elena L. Gubanova\",\"doi\":\"10.1002/smsc.202300241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanostructured palladium (Pd) is a universal catalyst that is widely used in applications ranging from catalytic converters of combustion engine cars to hydrogenation catalysts in industrial processes. Standard protocols for synthesizing such nanoparticles (NPs) typically use bottom-up approaches. They utilize special and often expensive physical techniques or wet-chemical methods requiring organic surfactants. These surfactants should often be removed before catalytic applications. In this article, the synthesis of Pd NPs immobilized on carbon support by electrochemical erosion without using any surfactants or toxic materials is reported. The Pd NPs synthesis essentially relies on a Pd bulk pretreatment, which causes material embrittlement and allows the erosion process to evolve more efficiently, producing homogeneously distributed NPs on the support. Moreover, the synthesized catalyst is tested for hydrogen evolution reaction. The activity evaluations identify optimal synthesis parameters related to the erosion procedure. The electrocatalytic properties of the Pd NPs produced with sizes down to 6.4 ± 2.9 nm are compared with a commercially available Pd/C catalyst. The synthesized catalyst outperforms the commercial catalyst within all properties, like specific surface area, geometric activity, mass activity, specific activity, and durability.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202300241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202300241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Top-down Surfactant-Free Synthesis of Supported Palladium-Nanostructured Catalysts
Nanostructured palladium (Pd) is a universal catalyst that is widely used in applications ranging from catalytic converters of combustion engine cars to hydrogenation catalysts in industrial processes. Standard protocols for synthesizing such nanoparticles (NPs) typically use bottom-up approaches. They utilize special and often expensive physical techniques or wet-chemical methods requiring organic surfactants. These surfactants should often be removed before catalytic applications. In this article, the synthesis of Pd NPs immobilized on carbon support by electrochemical erosion without using any surfactants or toxic materials is reported. The Pd NPs synthesis essentially relies on a Pd bulk pretreatment, which causes material embrittlement and allows the erosion process to evolve more efficiently, producing homogeneously distributed NPs on the support. Moreover, the synthesized catalyst is tested for hydrogen evolution reaction. The activity evaluations identify optimal synthesis parameters related to the erosion procedure. The electrocatalytic properties of the Pd NPs produced with sizes down to 6.4 ± 2.9 nm are compared with a commercially available Pd/C catalyst. The synthesized catalyst outperforms the commercial catalyst within all properties, like specific surface area, geometric activity, mass activity, specific activity, and durability.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.