基于形似的 DAS 数据微地震事件检测器

IF 2.8 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geophysical Journal International Pub Date : 2024-01-12 DOI:10.1093/gji/ggae016
Juan Porras, Davide Pecci, Gian Maria Bocchini, Sonja Gaviano, Michele De Solda, Katinka Tuinstra, Federica Lanza, Andrea Tognarelli, Eusebio Stucchi, Francesco Grigoli
{"title":"基于形似的 DAS 数据微地震事件检测器","authors":"Juan Porras, Davide Pecci, Gian Maria Bocchini, Sonja Gaviano, Michele De Solda, Katinka Tuinstra, Federica Lanza, Andrea Tognarelli, Eusebio Stucchi, Francesco Grigoli","doi":"10.1093/gji/ggae016","DOIUrl":null,"url":null,"abstract":"Summary Distributed Acoustic Sensing (DAS) is becoming increasingly popular in microseismic monitoring operations. This data acquisition technology converts fiber-optic cables into dense arrays of seismic sensors that can sample the seismic wavefield produced by active or passive sources with a high spatial density, over distances ranging from a few hundred meters to tens of kilometers. However, standard microseismic data analysis procedures have several limitations when dealing with the high spatial (inter-sensor spacing up to sub-meter scale) sampling rates of DAS systems. Here we propose a semblance-based seismic event detection method that fully exploits the high spatial sampling of the DAS data. The detector identifies seismic events by computing waveform coherence of the seismic wavefield along geometrical hyperbolic trajectories for different curvatures and positions of the vertex, which are completely independent from external information (i.e. velocity models). The method detects a seismic event when the coherence values overcome a given threshold and satisfies our clustering criteria. We first validate our method on synthetic data and then apply it to real data from the FORGE geothermal experiment in Utah, USA. Our method detects about two times the number of events obtained with a standard method when applied to 24h of data.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"93 4 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semblance-based microseismic event detector for DAS data\",\"authors\":\"Juan Porras, Davide Pecci, Gian Maria Bocchini, Sonja Gaviano, Michele De Solda, Katinka Tuinstra, Federica Lanza, Andrea Tognarelli, Eusebio Stucchi, Francesco Grigoli\",\"doi\":\"10.1093/gji/ggae016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Distributed Acoustic Sensing (DAS) is becoming increasingly popular in microseismic monitoring operations. This data acquisition technology converts fiber-optic cables into dense arrays of seismic sensors that can sample the seismic wavefield produced by active or passive sources with a high spatial density, over distances ranging from a few hundred meters to tens of kilometers. However, standard microseismic data analysis procedures have several limitations when dealing with the high spatial (inter-sensor spacing up to sub-meter scale) sampling rates of DAS systems. Here we propose a semblance-based seismic event detection method that fully exploits the high spatial sampling of the DAS data. The detector identifies seismic events by computing waveform coherence of the seismic wavefield along geometrical hyperbolic trajectories for different curvatures and positions of the vertex, which are completely independent from external information (i.e. velocity models). The method detects a seismic event when the coherence values overcome a given threshold and satisfies our clustering criteria. We first validate our method on synthetic data and then apply it to real data from the FORGE geothermal experiment in Utah, USA. Our method detects about two times the number of events obtained with a standard method when applied to 24h of data.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"93 4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae016\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae016","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 分布式声学传感(DAS)在微地震监测作业中越来越受欢迎。这种数据采集技术将光纤电缆转换成密集的地震传感器阵列,可以对主动源或被动源产生的地震波场进行高空间密度采样,采样距离从几百米到几十公里不等。然而,标准的微地震数据分析程序在处理 DAS 系统的高空间(传感器间距达到亚米级)采样率时存在一些限制。在此,我们提出一种基于形似的地震事件检测方法,充分利用 DAS 数据的高空间采样率。该检测器通过计算不同曲率和顶点位置的几何双曲线轨迹上地震波场的波形相干性来识别地震事件,这些波形相干性与外部信息(即速度模型)完全无关。当相干值超过给定阈值并满足我们的聚类标准时,该方法就能检测到地震事件。我们首先在合成数据上验证了我们的方法,然后将其应用于美国犹他州 FORGE 地热实验的真实数据。当应用于 24 小时的数据时,我们的方法检测到的事件数量大约是标准方法的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semblance-based microseismic event detector for DAS data
Summary Distributed Acoustic Sensing (DAS) is becoming increasingly popular in microseismic monitoring operations. This data acquisition technology converts fiber-optic cables into dense arrays of seismic sensors that can sample the seismic wavefield produced by active or passive sources with a high spatial density, over distances ranging from a few hundred meters to tens of kilometers. However, standard microseismic data analysis procedures have several limitations when dealing with the high spatial (inter-sensor spacing up to sub-meter scale) sampling rates of DAS systems. Here we propose a semblance-based seismic event detection method that fully exploits the high spatial sampling of the DAS data. The detector identifies seismic events by computing waveform coherence of the seismic wavefield along geometrical hyperbolic trajectories for different curvatures and positions of the vertex, which are completely independent from external information (i.e. velocity models). The method detects a seismic event when the coherence values overcome a given threshold and satisfies our clustering criteria. We first validate our method on synthetic data and then apply it to real data from the FORGE geothermal experiment in Utah, USA. Our method detects about two times the number of events obtained with a standard method when applied to 24h of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Journal International
Geophysical Journal International 地学-地球化学与地球物理
CiteScore
5.40
自引率
10.70%
发文量
436
审稿时长
3.3 months
期刊介绍: Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.
期刊最新文献
Modelling of non-linear elastic constitutive relationship and numerical simulation of rocks based on the Preisach-Mayergoyz space model Marginal stability analyses for thermochemical convection and its implications for the dynamics of continental lithosphere and core-mantle boundary regions Deep neural helmholtz operators for 3D elastic wave propagation and inversion Event locations: Speeding up grid searches using quadratic interpolation Internal deformation of the North Andean Sliver in Ecuador-southern Colombia observed by InSAR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1