Ye Lin, Shaolin Liu, Dinghui Yang, Xiwei Xu, Shuxin Yang, Wenshuai Wang
{"title":"环境噪声断层扫描揭示的滇西腾冲火山地下多尺度岩浆系统","authors":"Ye Lin, Shaolin Liu, Dinghui Yang, Xiwei Xu, Shuxin Yang, Wenshuai Wang","doi":"10.1093/gji/ggae019","DOIUrl":null,"url":null,"abstract":"Summary The western Yunnan is located in the SE Tibetan Plateau, and is characterized by the active Tengchong volcano (TCV), complex crust-mantle coupling and intense earthquakes. To elucidate tectonism in the western Yunnan, we construct a 3D S-wave velocity model to 80 km depth via ambient noise tomography using dense seismic stations. Our model shows significant low-velocity anomalies at different depths in the crust and uppermost mantle. Compared with the results of previous regional tomography, we image low-velocity anomalies consistent with a large-scale source of partial melts in the uppermost mantle beneath the Tengchong and Baoshan blocks, rather than just below the Tengchong block. Our results also reveal a magma chamber extending from the shallow subsurface to the lower crust beneath the TCV, which is fed by the mantle source. Based on these findings, we propose that the mantle source and crustal magma chamber form a multi-scale magma system. Moreover, the mantle source is potentially resulted from asthenospheric upwelling, which is related to the subduction of the Indian slab. In addition, our model shows that the 1976 M7.4 and M7.3 Longling earthquakes occurred near a magma chamber. Thus, fluids from the magma chamber likely reduced the frictional coefficient on the seismogenic fault and caused the Longling earthquakes.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"60 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiscale magma system beneath the Tengchong volcano in western Yunnan revealed by ambient noise tomography\",\"authors\":\"Ye Lin, Shaolin Liu, Dinghui Yang, Xiwei Xu, Shuxin Yang, Wenshuai Wang\",\"doi\":\"10.1093/gji/ggae019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The western Yunnan is located in the SE Tibetan Plateau, and is characterized by the active Tengchong volcano (TCV), complex crust-mantle coupling and intense earthquakes. To elucidate tectonism in the western Yunnan, we construct a 3D S-wave velocity model to 80 km depth via ambient noise tomography using dense seismic stations. Our model shows significant low-velocity anomalies at different depths in the crust and uppermost mantle. Compared with the results of previous regional tomography, we image low-velocity anomalies consistent with a large-scale source of partial melts in the uppermost mantle beneath the Tengchong and Baoshan blocks, rather than just below the Tengchong block. Our results also reveal a magma chamber extending from the shallow subsurface to the lower crust beneath the TCV, which is fed by the mantle source. Based on these findings, we propose that the mantle source and crustal magma chamber form a multi-scale magma system. Moreover, the mantle source is potentially resulted from asthenospheric upwelling, which is related to the subduction of the Indian slab. In addition, our model shows that the 1976 M7.4 and M7.3 Longling earthquakes occurred near a magma chamber. Thus, fluids from the magma chamber likely reduced the frictional coefficient on the seismogenic fault and caused the Longling earthquakes.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae019\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae019","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A multiscale magma system beneath the Tengchong volcano in western Yunnan revealed by ambient noise tomography
Summary The western Yunnan is located in the SE Tibetan Plateau, and is characterized by the active Tengchong volcano (TCV), complex crust-mantle coupling and intense earthquakes. To elucidate tectonism in the western Yunnan, we construct a 3D S-wave velocity model to 80 km depth via ambient noise tomography using dense seismic stations. Our model shows significant low-velocity anomalies at different depths in the crust and uppermost mantle. Compared with the results of previous regional tomography, we image low-velocity anomalies consistent with a large-scale source of partial melts in the uppermost mantle beneath the Tengchong and Baoshan blocks, rather than just below the Tengchong block. Our results also reveal a magma chamber extending from the shallow subsurface to the lower crust beneath the TCV, which is fed by the mantle source. Based on these findings, we propose that the mantle source and crustal magma chamber form a multi-scale magma system. Moreover, the mantle source is potentially resulted from asthenospheric upwelling, which is related to the subduction of the Indian slab. In addition, our model shows that the 1976 M7.4 and M7.3 Longling earthquakes occurred near a magma chamber. Thus, fluids from the magma chamber likely reduced the frictional coefficient on the seismogenic fault and caused the Longling earthquakes.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.