{"title":"乳球菌 Prolidase 异构行为和底物特异性的结构基础","authors":"Shangyi Xu , Pawel Grochulski , Takuji Tanaka","doi":"10.1016/j.bbapap.2024.141000","DOIUrl":null,"url":null,"abstract":"<div><p>Prolidase (EC 3.4.13.9) is an enzyme that specifically hydrolyzes Xaa-Pro dipeptides into free amino acids. We previously studied kinetic behaviours and solved the crystal structure of wild-type (WT) <em>Lactococcus lactis</em> prolidase (<em>Ll</em>prol), showing that this homodimeric enzyme has unique characteristics: allosteric behaviour and substrate inhibition. In this study, we focused on solving the crystal structures of three <em>Ll</em>prol mutants (D36S, H38S, and R293S) which behave differently in <em>v</em>-<em>S</em> plots. The D36S and R293S <em>Ll</em>prol mutants do not show allosteric behaviour, and the <em>Ll</em>prol mutant H38S has allosteric behaviour comparable to the WT enzyme (Hill constant 1.52 and 1.58, respectively). The crystal structures of <em>Ll</em>prol variants suggest that the active site of <em>Ll</em>prol formed with amino acid residues from both monomers, <em>i.e.</em>, located in an interfacial area of dimer. The comparison between the structure models of <em>Ll</em>prol indicated that the two monomers in the dimers of <em>Ll</em>prol variants have different relative positions among <em>Ll</em>prol variants. They showed different interatomic distances between the amino acid residues bridging the two monomers and varied sizes of the solvent-accessible interface areas in each <em>Ll</em>prol variant. These observations indicated that <em>Ll</em>prol could adapt to different conformational states with distinctive substrate affinities. It is strongly speculated that the domain movements required for productive substrate binding are restrained in allosteric <em>Ll</em>prol (WT and H38S). At low substrate concentrations, only one out of the two active sites at the dimer interface could accept substrate; as a result, the asymmetrical activated dimer leads to allosteric behaviour.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570963924000074/pdfft?md5=91ed69605856a30f112d2ccce3c18f91&pid=1-s2.0-S1570963924000074-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural basis for the allosteric behaviour and substrate specificity of Lactococcus lactis Prolidase\",\"authors\":\"Shangyi Xu , Pawel Grochulski , Takuji Tanaka\",\"doi\":\"10.1016/j.bbapap.2024.141000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prolidase (EC 3.4.13.9) is an enzyme that specifically hydrolyzes Xaa-Pro dipeptides into free amino acids. We previously studied kinetic behaviours and solved the crystal structure of wild-type (WT) <em>Lactococcus lactis</em> prolidase (<em>Ll</em>prol), showing that this homodimeric enzyme has unique characteristics: allosteric behaviour and substrate inhibition. In this study, we focused on solving the crystal structures of three <em>Ll</em>prol mutants (D36S, H38S, and R293S) which behave differently in <em>v</em>-<em>S</em> plots. The D36S and R293S <em>Ll</em>prol mutants do not show allosteric behaviour, and the <em>Ll</em>prol mutant H38S has allosteric behaviour comparable to the WT enzyme (Hill constant 1.52 and 1.58, respectively). The crystal structures of <em>Ll</em>prol variants suggest that the active site of <em>Ll</em>prol formed with amino acid residues from both monomers, <em>i.e.</em>, located in an interfacial area of dimer. The comparison between the structure models of <em>Ll</em>prol indicated that the two monomers in the dimers of <em>Ll</em>prol variants have different relative positions among <em>Ll</em>prol variants. They showed different interatomic distances between the amino acid residues bridging the two monomers and varied sizes of the solvent-accessible interface areas in each <em>Ll</em>prol variant. These observations indicated that <em>Ll</em>prol could adapt to different conformational states with distinctive substrate affinities. It is strongly speculated that the domain movements required for productive substrate binding are restrained in allosteric <em>Ll</em>prol (WT and H38S). At low substrate concentrations, only one out of the two active sites at the dimer interface could accept substrate; as a result, the asymmetrical activated dimer leads to allosteric behaviour.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570963924000074/pdfft?md5=91ed69605856a30f112d2ccce3c18f91&pid=1-s2.0-S1570963924000074-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963924000074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Structural basis for the allosteric behaviour and substrate specificity of Lactococcus lactis Prolidase
Prolidase (EC 3.4.13.9) is an enzyme that specifically hydrolyzes Xaa-Pro dipeptides into free amino acids. We previously studied kinetic behaviours and solved the crystal structure of wild-type (WT) Lactococcus lactis prolidase (Llprol), showing that this homodimeric enzyme has unique characteristics: allosteric behaviour and substrate inhibition. In this study, we focused on solving the crystal structures of three Llprol mutants (D36S, H38S, and R293S) which behave differently in v-S plots. The D36S and R293S Llprol mutants do not show allosteric behaviour, and the Llprol mutant H38S has allosteric behaviour comparable to the WT enzyme (Hill constant 1.52 and 1.58, respectively). The crystal structures of Llprol variants suggest that the active site of Llprol formed with amino acid residues from both monomers, i.e., located in an interfacial area of dimer. The comparison between the structure models of Llprol indicated that the two monomers in the dimers of Llprol variants have different relative positions among Llprol variants. They showed different interatomic distances between the amino acid residues bridging the two monomers and varied sizes of the solvent-accessible interface areas in each Llprol variant. These observations indicated that Llprol could adapt to different conformational states with distinctive substrate affinities. It is strongly speculated that the domain movements required for productive substrate binding are restrained in allosteric Llprol (WT and H38S). At low substrate concentrations, only one out of the two active sites at the dimer interface could accept substrate; as a result, the asymmetrical activated dimer leads to allosteric behaviour.