Riya Patel, Pratibha Verma, Anil Kumar Nagraj, Akshata Gavade, Om Prakash Sharma, Jaspal Patil
{"title":"抗体编号系统在抗体工程发展中的意义。","authors":"Riya Patel, Pratibha Verma, Anil Kumar Nagraj, Akshata Gavade, Om Prakash Sharma, Jaspal Patil","doi":"10.3233/HAB-230014","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has become increasingly popular in recent years for treating a variety of diseases including inflammatory, neurological, oncological, and auto-immune disorders. The significant interest in antibody development is due to the high binding affinity and specificity of an antibody against a specific antigen. Recent advances in antibody engineering have provided a different view on how to engineer antibodies in silico for therapeutic and diagnostic applications. In order to improve the clinical utility of therapeutic antibodies, it is of paramount importance to understand the various molecular properties which impact antigen targeting and its potency. In antibody engineering, antibody numbering (AbN) systems play an important role to identify the complementarity determining regions (CDRs) and the framework regions (FR). Hence, it is crucial to accurately define and understand the CDR, FR and the crucial residues of heavy and light chains that aid in the binding of the antibody to the antigenic site. Detailed understanding of amino acids positions are useful for modifying the binding affinity, specificity, physicochemical features, and half-life of an antibody. In this review, we have summarized the different antibody numbering systems that are widely used in antibody engineering and highlighted their significance. Here, we have systematically explored and mentioned the various tools and servers that harness different AbN systems.</p>","PeriodicalId":53564,"journal":{"name":"Human Antibodies","volume":" ","pages":"71-80"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of antibody numbering systems in the development of antibody engineering.\",\"authors\":\"Riya Patel, Pratibha Verma, Anil Kumar Nagraj, Akshata Gavade, Om Prakash Sharma, Jaspal Patil\",\"doi\":\"10.3233/HAB-230014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunotherapy has become increasingly popular in recent years for treating a variety of diseases including inflammatory, neurological, oncological, and auto-immune disorders. The significant interest in antibody development is due to the high binding affinity and specificity of an antibody against a specific antigen. Recent advances in antibody engineering have provided a different view on how to engineer antibodies in silico for therapeutic and diagnostic applications. In order to improve the clinical utility of therapeutic antibodies, it is of paramount importance to understand the various molecular properties which impact antigen targeting and its potency. In antibody engineering, antibody numbering (AbN) systems play an important role to identify the complementarity determining regions (CDRs) and the framework regions (FR). Hence, it is crucial to accurately define and understand the CDR, FR and the crucial residues of heavy and light chains that aid in the binding of the antibody to the antigenic site. Detailed understanding of amino acids positions are useful for modifying the binding affinity, specificity, physicochemical features, and half-life of an antibody. In this review, we have summarized the different antibody numbering systems that are widely used in antibody engineering and highlighted their significance. Here, we have systematically explored and mentioned the various tools and servers that harness different AbN systems.</p>\",\"PeriodicalId\":53564,\"journal\":{\"name\":\"Human Antibodies\",\"volume\":\" \",\"pages\":\"71-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/HAB-230014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/HAB-230014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Significance of antibody numbering systems in the development of antibody engineering.
Immunotherapy has become increasingly popular in recent years for treating a variety of diseases including inflammatory, neurological, oncological, and auto-immune disorders. The significant interest in antibody development is due to the high binding affinity and specificity of an antibody against a specific antigen. Recent advances in antibody engineering have provided a different view on how to engineer antibodies in silico for therapeutic and diagnostic applications. In order to improve the clinical utility of therapeutic antibodies, it is of paramount importance to understand the various molecular properties which impact antigen targeting and its potency. In antibody engineering, antibody numbering (AbN) systems play an important role to identify the complementarity determining regions (CDRs) and the framework regions (FR). Hence, it is crucial to accurately define and understand the CDR, FR and the crucial residues of heavy and light chains that aid in the binding of the antibody to the antigenic site. Detailed understanding of amino acids positions are useful for modifying the binding affinity, specificity, physicochemical features, and half-life of an antibody. In this review, we have summarized the different antibody numbering systems that are widely used in antibody engineering and highlighted their significance. Here, we have systematically explored and mentioned the various tools and servers that harness different AbN systems.
期刊介绍:
Human Antibodies is an international journal designed to bring together all aspects of human hybridomas and antibody technology under a single, cohesive theme. This includes fundamental research, applied science and clinical applications. Emphasis in the published articles is on antisera, monoclonal antibodies, fusion partners, EBV transformation, transfections, in vitro immunization, defined antigens, tissue reactivity, scale-up production, chimeric antibodies, autoimmunity, natural antibodies/immune response, anti-idiotypes, and hybridomas secreting interesting growth factors. Immunoregulatory molecules, including T cell hybridomas, will also be featured.