将弥散加权磁共振成像与血清粘蛋白 1、粘蛋白 13 和粘蛋白 16 相结合,对区分边缘性和恶性上皮性卵巢肿瘤的诊断效果。

IF 1.4 4区 医学 Q4 ONCOLOGY Asia-Pacific journal of clinical oncology Pub Date : 2024-01-14 DOI:10.1111/ajco.14045
Xiao-Ting Wen, Hai-Feng Qiu, Ling-Ling Ying, Min Huang, Yun-Zhou Xiao, Chen-Chen Fan
{"title":"将弥散加权磁共振成像与血清粘蛋白 1、粘蛋白 13 和粘蛋白 16 相结合,对区分边缘性和恶性上皮性卵巢肿瘤的诊断效果。","authors":"Xiao-Ting Wen, Hai-Feng Qiu, Ling-Ling Ying, Min Huang, Yun-Zhou Xiao, Chen-Chen Fan","doi":"10.1111/ajco.14045","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To enhance ovarian tumor diagnosis beyond conventional methods, this study explored combining diffusion-weighted magnetic resonance imaging (DWI-MRI) and serum biomarkers (Mucin 1 [MUC1], MUC13, and MUC16) for distinguishing borderline from malignant epithelial ovarian tumors.</p><p><strong>Methods: </strong>A total of 126 patients, including 71 diagnosed with borderline (BEOTs) and 55 with malignant epithelial ovarian tumors (MEOTs), underwent preoperative DWI-MRI. Region of interest (ROI) was manually drawn along the solid component's boundary of the largest tumor, focusing on areas with potentially the lowest apparent diffusion coefficient (ADC). For entirely cystic tumors, a free-form ROI enclosed the maximum number of septa while targeting the lowest ADC. Serum biomarkers were determined using enzyme-linked immunosorbent assay.</p><p><strong>Results: </strong>Basic morphological traits proved inadequate for malignancy diagnosis, warranting this investigation. BEOTs had an ADC mean of (1.670 ± 0.250) × 10<sup>3</sup> mm<sup>2</sup> /s, while MEOTs had a lower ADC mean of (1.332 ± 0.481) × 10<sup>3</sup> mm<sup>2</sup> /s, with a sensitivity of 63.6% and specificity of 90.1%. Median MUC1 (167.0 U/mL vs. 87.3 U/mL), MUC13 (12.44 ng/mL vs. 7.77 ng/mL), and MUC16 (180.6 U/mL vs. 36.1 U/mL) levels were higher in MEOTs patients. The biomarker performance was: MUC1, sensitivity 50.9%, specificity 100%; MUC13, sensitivity 56.4%, specificity 78.9%; MUC16, sensitivity 83.64%, specificity 100%. Combining serum biomarkers and ADC mean resulted in a sensitivity of 96.4% and specificity of 100%.</p><p><strong>Conclusion: </strong>The integration of DWI-MRI with serum biomarkers (MUC1, MUC13, and MUC16) achieves exceptional diagnostic accuracy, offering a powerful tool for the precise differentiation between borderline and malignant epithelial ovarian tumors.</p>","PeriodicalId":8633,"journal":{"name":"Asia-Pacific journal of clinical oncology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic efficacy of combining diffusion-weighted magnetic resonance imaging with serum Mucin 1, Mucin 13, and Mucin 16 in distinguishing borderline from malignant epithelial ovarian tumors.\",\"authors\":\"Xiao-Ting Wen, Hai-Feng Qiu, Ling-Ling Ying, Min Huang, Yun-Zhou Xiao, Chen-Chen Fan\",\"doi\":\"10.1111/ajco.14045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To enhance ovarian tumor diagnosis beyond conventional methods, this study explored combining diffusion-weighted magnetic resonance imaging (DWI-MRI) and serum biomarkers (Mucin 1 [MUC1], MUC13, and MUC16) for distinguishing borderline from malignant epithelial ovarian tumors.</p><p><strong>Methods: </strong>A total of 126 patients, including 71 diagnosed with borderline (BEOTs) and 55 with malignant epithelial ovarian tumors (MEOTs), underwent preoperative DWI-MRI. Region of interest (ROI) was manually drawn along the solid component's boundary of the largest tumor, focusing on areas with potentially the lowest apparent diffusion coefficient (ADC). For entirely cystic tumors, a free-form ROI enclosed the maximum number of septa while targeting the lowest ADC. Serum biomarkers were determined using enzyme-linked immunosorbent assay.</p><p><strong>Results: </strong>Basic morphological traits proved inadequate for malignancy diagnosis, warranting this investigation. BEOTs had an ADC mean of (1.670 ± 0.250) × 10<sup>3</sup> mm<sup>2</sup> /s, while MEOTs had a lower ADC mean of (1.332 ± 0.481) × 10<sup>3</sup> mm<sup>2</sup> /s, with a sensitivity of 63.6% and specificity of 90.1%. Median MUC1 (167.0 U/mL vs. 87.3 U/mL), MUC13 (12.44 ng/mL vs. 7.77 ng/mL), and MUC16 (180.6 U/mL vs. 36.1 U/mL) levels were higher in MEOTs patients. The biomarker performance was: MUC1, sensitivity 50.9%, specificity 100%; MUC13, sensitivity 56.4%, specificity 78.9%; MUC16, sensitivity 83.64%, specificity 100%. Combining serum biomarkers and ADC mean resulted in a sensitivity of 96.4% and specificity of 100%.</p><p><strong>Conclusion: </strong>The integration of DWI-MRI with serum biomarkers (MUC1, MUC13, and MUC16) achieves exceptional diagnostic accuracy, offering a powerful tool for the precise differentiation between borderline and malignant epithelial ovarian tumors.</p>\",\"PeriodicalId\":8633,\"journal\":{\"name\":\"Asia-Pacific journal of clinical oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific journal of clinical oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ajco.14045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific journal of clinical oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ajco.14045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:为了超越传统方法提高卵巢肿瘤诊断水平,本研究探讨了结合弥散加权磁共振成像(DWI-MRI)和血清生物标志物(粘蛋白1 [MUC1]、MUC13和MUC16)区分边缘性卵巢肿瘤和恶性上皮性卵巢肿瘤的方法:共有126名患者接受了术前DWI-MRI检查,其中包括71名被诊断为边缘性卵巢肿瘤(BEOTs)和55名恶性上皮性卵巢肿瘤(MEOTs)患者。沿着最大肿瘤的实体部分边界手工绘制感兴趣区(ROI),重点关注表观扩散系数(ADC)可能最低的区域。对于完全囊性的肿瘤,自由形式的 ROI 将最大数量的隔膜包围起来,同时以最低 ADC 为目标。使用酶联免疫吸附法测定血清生物标志物:基本形态特征不足以进行恶性肿瘤诊断,因此有必要进行这项研究。BEOT的ADC平均值为(1.670 ± 0.250)×103 mm2 /s,而MEOT的ADC平均值较低,为(1.332 ± 0.481)×103 mm2 /s,敏感性为63.6%,特异性为90.1%。MEOTs患者的中位MUC1(167.0 U/mL对87.3 U/mL)、MUC13(12.44 ng/mL对7.77 ng/mL)和MUC16(180.6 U/mL对36.1 U/mL)水平较高。生物标志物的性能如下MUC1的灵敏度为50.9%,特异性为100%;MUC13的灵敏度为56.4%,特异性为78.9%;MUC16的灵敏度为83.64%,特异性为100%。结合血清生物标记物和 ADC 平均值,灵敏度为 96.4%,特异性为 100%:结论:将DWI-MRI与血清生物标记物(MUC1、MUC13和MUC16)相结合可获得极高的诊断准确性,是精确区分边缘性卵巢肿瘤和恶性上皮性卵巢肿瘤的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnostic efficacy of combining diffusion-weighted magnetic resonance imaging with serum Mucin 1, Mucin 13, and Mucin 16 in distinguishing borderline from malignant epithelial ovarian tumors.

Aims: To enhance ovarian tumor diagnosis beyond conventional methods, this study explored combining diffusion-weighted magnetic resonance imaging (DWI-MRI) and serum biomarkers (Mucin 1 [MUC1], MUC13, and MUC16) for distinguishing borderline from malignant epithelial ovarian tumors.

Methods: A total of 126 patients, including 71 diagnosed with borderline (BEOTs) and 55 with malignant epithelial ovarian tumors (MEOTs), underwent preoperative DWI-MRI. Region of interest (ROI) was manually drawn along the solid component's boundary of the largest tumor, focusing on areas with potentially the lowest apparent diffusion coefficient (ADC). For entirely cystic tumors, a free-form ROI enclosed the maximum number of septa while targeting the lowest ADC. Serum biomarkers were determined using enzyme-linked immunosorbent assay.

Results: Basic morphological traits proved inadequate for malignancy diagnosis, warranting this investigation. BEOTs had an ADC mean of (1.670 ± 0.250) × 103 mm2 /s, while MEOTs had a lower ADC mean of (1.332 ± 0.481) × 103 mm2 /s, with a sensitivity of 63.6% and specificity of 90.1%. Median MUC1 (167.0 U/mL vs. 87.3 U/mL), MUC13 (12.44 ng/mL vs. 7.77 ng/mL), and MUC16 (180.6 U/mL vs. 36.1 U/mL) levels were higher in MEOTs patients. The biomarker performance was: MUC1, sensitivity 50.9%, specificity 100%; MUC13, sensitivity 56.4%, specificity 78.9%; MUC16, sensitivity 83.64%, specificity 100%. Combining serum biomarkers and ADC mean resulted in a sensitivity of 96.4% and specificity of 100%.

Conclusion: The integration of DWI-MRI with serum biomarkers (MUC1, MUC13, and MUC16) achieves exceptional diagnostic accuracy, offering a powerful tool for the precise differentiation between borderline and malignant epithelial ovarian tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
175
审稿时长
6-12 weeks
期刊介绍: Asia–Pacific Journal of Clinical Oncology is a multidisciplinary journal of oncology that aims to be a forum for facilitating collaboration and exchanging information on what is happening in different countries of the Asia–Pacific region in relation to cancer treatment and care. The Journal is ideally positioned to receive publications that deal with diversity in cancer behavior, management and outcome related to ethnic, cultural, economic and other differences between populations. In addition to original articles, the Journal publishes reviews, editorials, letters to the Editor and short communications. Case reports are generally not considered for publication, only exceptional papers in which Editors find extraordinary oncological value may be considered for review. The Journal encourages clinical studies, particularly prospectively designed clinical trials.
期刊最新文献
Cancer Clinical Trial Participation Amongst Culturally and Linguistically Diverse Patients in Australia. Issue Information COSA's 51st Annual Scientific Meeting Bridging gaps, building progress, breaking down disparities 13-15 November 2024. COSA's 51st Annual Scientific Meeting Bridging gaps, building progress, breaking down disparities 13-15 November 2024. COSA's 51st Annual Scientific Meeting Bridging gaps, building progress, breaking down disparities 13-15 November 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1