NeuroBus - 超灵活神经接口架构。

Markus Sporer;Ioana-Georgiana Vasilaş;Ahmed Adžemović;Nicolas Graber;Stefan Reich;Calogero Gueli;Max Eickenscheidt;Ilka Diester;Thomas Stieglitz;Maurits Ortmanns
{"title":"NeuroBus - 超灵活神经接口架构。","authors":"Markus Sporer;Ioana-Georgiana Vasilaş;Ahmed Adžemović;Nicolas Graber;Stefan Reich;Calogero Gueli;Max Eickenscheidt;Ilka Diester;Thomas Stieglitz;Maurits Ortmanns","doi":"10.1109/TBCAS.2024.3354785","DOIUrl":null,"url":null,"abstract":"This article presents the system architecture for an implant concept called \n<italic>NeuroBus</i>\n. Tiny distributed direct digitizing neural recorder ASICs on an ultra-flexible polyimide substrate are connected in a bus-like structure, allowing short connections between electrode and recording front-end with low wiring effort and high customizability. The small size (344\n<inline-formula><tex-math>$\\,\\mu$</tex-math></inline-formula>\nm × 294 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm) of the ASICs and the ultraflexible substrate allow a low bending stiffness, enabling the implant to adapt to the curvature of the brain and achieving high structural biocompatibility. We introduce the architecture, the integrated building blocks, and the post-CMOS processes required to realize a \n<italic>NeuroBus</i>\n, and we characterize the prototyped direct digitizing neural recorder front-end as well as polyimide-based ECoG brain interface. A rodent animal model is further used to validate the joint capability of the recording front-end and thin-film electrode array.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400847","citationCount":"0","resultStr":"{\"title\":\"NeuroBus - Architecture for an Ultra-Flexible Neural Interface\",\"authors\":\"Markus Sporer;Ioana-Georgiana Vasilaş;Ahmed Adžemović;Nicolas Graber;Stefan Reich;Calogero Gueli;Max Eickenscheidt;Ilka Diester;Thomas Stieglitz;Maurits Ortmanns\",\"doi\":\"10.1109/TBCAS.2024.3354785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the system architecture for an implant concept called \\n<italic>NeuroBus</i>\\n. Tiny distributed direct digitizing neural recorder ASICs on an ultra-flexible polyimide substrate are connected in a bus-like structure, allowing short connections between electrode and recording front-end with low wiring effort and high customizability. The small size (344\\n<inline-formula><tex-math>$\\\\,\\\\mu$</tex-math></inline-formula>\\nm × 294 \\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm) of the ASICs and the ultraflexible substrate allow a low bending stiffness, enabling the implant to adapt to the curvature of the brain and achieving high structural biocompatibility. We introduce the architecture, the integrated building blocks, and the post-CMOS processes required to realize a \\n<italic>NeuroBus</i>\\n, and we characterize the prototyped direct digitizing neural recorder front-end as well as polyimide-based ECoG brain interface. A rodent animal model is further used to validate the joint capability of the recording front-end and thin-film electrode array.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400847\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10400847/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10400847/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种名为 "神经总线"(NeuroBus)的植入概念的系统架构。微小的分布式直接数字化神经记录器 ASIC 位于超柔性聚酰亚胺基底上,以总线式结构连接,从而实现了电极和记录前端之间的短连接,布线工作量低,可定制性高。ASIC 的小尺寸(344 μm x 294 μm)和超柔性基底允许较低的弯曲刚度,从而使植入体能够适应大脑的弧度,实现较高的结构生物相容性。我们介绍了实现神经总线所需的架构、集成构件和后 CMOS 工艺,并对直接数字化神经记录器前端原型以及基于聚酰亚胺的心电图脑接口进行了表征。我们进一步利用啮齿动物模型来验证记录前端和薄膜电极阵列的联合能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeuroBus - Architecture for an Ultra-Flexible Neural Interface
This article presents the system architecture for an implant concept called NeuroBus . Tiny distributed direct digitizing neural recorder ASICs on an ultra-flexible polyimide substrate are connected in a bus-like structure, allowing short connections between electrode and recording front-end with low wiring effort and high customizability. The small size (344 $\,\mu$ m × 294 $\mu$ m) of the ASICs and the ultraflexible substrate allow a low bending stiffness, enabling the implant to adapt to the curvature of the brain and achieving high structural biocompatibility. We introduce the architecture, the integrated building blocks, and the post-CMOS processes required to realize a NeuroBus , and we characterize the prototyped direct digitizing neural recorder front-end as well as polyimide-based ECoG brain interface. A rodent animal model is further used to validate the joint capability of the recording front-end and thin-film electrode array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Integrated Dual-Mode Pulse and Continuous-Wave Electron Paramagnetic Resonance Spectrometers. NEXUS: A 28nm 3.3pJ/SOP 16-Core Spiking Neural Network with a Diamond Topology for Real-Time Data Processing. An Electrochemical CMOS Biosensor Array Using Phase-Only Modulation With 0.035% Phase Error And In-Pixel Averaging. GCOC: A Genome Classifier-On-Chip based on Similarity Search Content Addressable Memory. Low-Power and Low-Cost AI Processor with Distributed-Aggregated Classification Architecture for Wearable Epilepsy Seizure Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1