{"title":"多模式、多地点资源受限项目调度问题的双目标优化","authors":"Shiba Hessami, Hamed Davari-Ardakani, Youness Javid, Mariam Ameli","doi":"10.1108/jm2-06-2023-0123","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to minimize the total completion time and the total cost of the project simultaneously.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>To deal with the problem under consideration, a bi-objective optimization model is developed. All activities are interconnected by finish-start precedence relations, and pre-emption is not allowed. Then, the ɛ-constraint optimization method is used to solve 24 different-sized instances, ranging from 5 to 120 activities, and report the makespan, total cost and CPU time. A set of Pareto-optimal solutions are determined for some instances, and sensitivity analyses are performed to find the impact of changing parameters on objective values.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Results highlight the importance of resource transportability assumption on project completion time and cost, providing useful insights for decision makers and practitioners.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>A novel bi-objective optimization model is proposed to deal with the multi-site MRCPSP, considering both the cost and time of resource transportation between multiple sites. To the best of the authors’ knowledge, none of the studies in the project scheduling area has yet addressed this problem.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-objective optimization of a multi-mode, multi-site resource-constrained project scheduling problem\",\"authors\":\"Shiba Hessami, Hamed Davari-Ardakani, Youness Javid, Mariam Ameli\",\"doi\":\"10.1108/jm2-06-2023-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to minimize the total completion time and the total cost of the project simultaneously.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>To deal with the problem under consideration, a bi-objective optimization model is developed. All activities are interconnected by finish-start precedence relations, and pre-emption is not allowed. Then, the ɛ-constraint optimization method is used to solve 24 different-sized instances, ranging from 5 to 120 activities, and report the makespan, total cost and CPU time. A set of Pareto-optimal solutions are determined for some instances, and sensitivity analyses are performed to find the impact of changing parameters on objective values.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Results highlight the importance of resource transportability assumption on project completion time and cost, providing useful insights for decision makers and practitioners.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>A novel bi-objective optimization model is proposed to deal with the multi-site MRCPSP, considering both the cost and time of resource transportation between multiple sites. To the best of the authors’ knowledge, none of the studies in the project scheduling area has yet addressed this problem.</p><!--/ Abstract__block -->\",\"PeriodicalId\":16349,\"journal\":{\"name\":\"Journal of Modelling in Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modelling in Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jm2-06-2023-0123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-06-2023-0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
Bi-objective optimization of a multi-mode, multi-site resource-constrained project scheduling problem
Purpose
This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to minimize the total completion time and the total cost of the project simultaneously.
Design/methodology/approach
To deal with the problem under consideration, a bi-objective optimization model is developed. All activities are interconnected by finish-start precedence relations, and pre-emption is not allowed. Then, the ɛ-constraint optimization method is used to solve 24 different-sized instances, ranging from 5 to 120 activities, and report the makespan, total cost and CPU time. A set of Pareto-optimal solutions are determined for some instances, and sensitivity analyses are performed to find the impact of changing parameters on objective values.
Findings
Results highlight the importance of resource transportability assumption on project completion time and cost, providing useful insights for decision makers and practitioners.
Originality/value
A novel bi-objective optimization model is proposed to deal with the multi-site MRCPSP, considering both the cost and time of resource transportation between multiple sites. To the best of the authors’ knowledge, none of the studies in the project scheduling area has yet addressed this problem.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.