模具偏差对铝/钢自冲铆接结构连接质量的影响

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2024-01-15 DOI:10.1007/s12289-023-01809-5
Yuxuan Liao, Jun Zhang, Gusheng Wu, Guangyao Li, Junjia Cui, Hao Jiang
{"title":"模具偏差对铝/钢自冲铆接结构连接质量的影响","authors":"Yuxuan Liao,&nbsp;Jun Zhang,&nbsp;Gusheng Wu,&nbsp;Guangyao Li,&nbsp;Junjia Cui,&nbsp;Hao Jiang","doi":"10.1007/s12289-023-01809-5","DOIUrl":null,"url":null,"abstract":"<div><p>Self-piercing riveting (SPR) is one of the advanced mechanical joining techniques, and it has been widely used in automobile industry. In this paper, the effect of die misalignment on the cross-section parameters and mechanical properties of SPR joints were respectively studied through numerical simulation and experiment, and the mechanical properties degradation mechanism of the misaligned riveted joint were analyzed. A three-dimensional explicit finite element model (FEM) of SPR joint was developed by ABAQUS, and the section observation was performed to evaluate the accuracy of FEM. The riveting process and the strain of SPR joints with different misalignment distance was analyzed, and the quasi-static shear test was carried out. The results revealed that the rivet leg near the die edge was thickened due to limitations in deformation space, and a cavity was formed at the outer edge of the rivet leg near the die center, during the riveting process. It resulted in different cross-section parameters and mechanical properties of SPR joints. Specifically, the interlock distance decreased as the misalignment distance increased. The bottom thickness of the side near the die edge increased with increasing misalignment distance, while that near the die center decreased slightly as the misalignment distance increased. In addition, the maximum shear load decreased nonlinearly with increasing misalignment distance, and the movement of die along the loading end had a significantly greater impact on the maximum shear load than the movement along the fixed end. This was mainly because the interlock distance of SPR joints was asymmetrically and nonlinearly reduced due to the die misalignment.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of die misalignment on the joining quality of Al/steel self-piercing riveting structure\",\"authors\":\"Yuxuan Liao,&nbsp;Jun Zhang,&nbsp;Gusheng Wu,&nbsp;Guangyao Li,&nbsp;Junjia Cui,&nbsp;Hao Jiang\",\"doi\":\"10.1007/s12289-023-01809-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-piercing riveting (SPR) is one of the advanced mechanical joining techniques, and it has been widely used in automobile industry. In this paper, the effect of die misalignment on the cross-section parameters and mechanical properties of SPR joints were respectively studied through numerical simulation and experiment, and the mechanical properties degradation mechanism of the misaligned riveted joint were analyzed. A three-dimensional explicit finite element model (FEM) of SPR joint was developed by ABAQUS, and the section observation was performed to evaluate the accuracy of FEM. The riveting process and the strain of SPR joints with different misalignment distance was analyzed, and the quasi-static shear test was carried out. The results revealed that the rivet leg near the die edge was thickened due to limitations in deformation space, and a cavity was formed at the outer edge of the rivet leg near the die center, during the riveting process. It resulted in different cross-section parameters and mechanical properties of SPR joints. Specifically, the interlock distance decreased as the misalignment distance increased. The bottom thickness of the side near the die edge increased with increasing misalignment distance, while that near the die center decreased slightly as the misalignment distance increased. In addition, the maximum shear load decreased nonlinearly with increasing misalignment distance, and the movement of die along the loading end had a significantly greater impact on the maximum shear load than the movement along the fixed end. This was mainly because the interlock distance of SPR joints was asymmetrically and nonlinearly reduced due to the die misalignment.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01809-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01809-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

自冲铆接(SPR)是先进的机械连接技术之一,已广泛应用于汽车行业。本文通过数值模拟和实验分别研究了模具错位对 SPR 接头截面参数和力学性能的影响,并分析了错位铆接接头的力学性能退化机理。利用 ABAQUS 建立了 SPR 接头的三维显式有限元模型(FEM),并进行了截面观察以评估 FEM 的精度。分析了不同错位距离 SPR 接头的铆接过程和应变,并进行了准静态剪切试验。结果表明,在铆接过程中,由于变形空间的限制,靠近模具边缘的铆钉腿变粗,靠近模具中心的铆钉腿外缘形成空腔。这导致了 SPR 接头截面参数和机械性能的不同。具体来说,随着错位距离的增大,互锁距离减小。靠近模具边缘一侧的底部厚度随着错位距离的增加而增加,而靠近模具中心一侧的底部厚度则随着错位距离的增加而略有减少。此外,最大剪切载荷随错位距离的增加呈非线性下降,模具沿加载端移动对最大剪切载荷的影响明显大于沿固定端的移动。这主要是因为模具错位导致 SPR 接头的互锁距离非对称地非线性减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of die misalignment on the joining quality of Al/steel self-piercing riveting structure

Self-piercing riveting (SPR) is one of the advanced mechanical joining techniques, and it has been widely used in automobile industry. In this paper, the effect of die misalignment on the cross-section parameters and mechanical properties of SPR joints were respectively studied through numerical simulation and experiment, and the mechanical properties degradation mechanism of the misaligned riveted joint were analyzed. A three-dimensional explicit finite element model (FEM) of SPR joint was developed by ABAQUS, and the section observation was performed to evaluate the accuracy of FEM. The riveting process and the strain of SPR joints with different misalignment distance was analyzed, and the quasi-static shear test was carried out. The results revealed that the rivet leg near the die edge was thickened due to limitations in deformation space, and a cavity was formed at the outer edge of the rivet leg near the die center, during the riveting process. It resulted in different cross-section parameters and mechanical properties of SPR joints. Specifically, the interlock distance decreased as the misalignment distance increased. The bottom thickness of the side near the die edge increased with increasing misalignment distance, while that near the die center decreased slightly as the misalignment distance increased. In addition, the maximum shear load decreased nonlinearly with increasing misalignment distance, and the movement of die along the loading end had a significantly greater impact on the maximum shear load than the movement along the fixed end. This was mainly because the interlock distance of SPR joints was asymmetrically and nonlinearly reduced due to the die misalignment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1