{"title":"骨形态发生蛋白-2 和脉冲电刺激可协同促进 MC-3T3-E1 细胞的成骨分化。","authors":"Shaodong Xie, Deming Zeng, Hanwen Luo, Ping Zhong, Yu Wang, Zhiqiang Xu, Peibiao Zhang","doi":"10.1007/s11010-023-04916-8","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical stimulation (ES) plays an important role in regulating cell osteoblast differentiation. As a noninvasive rehabilitation therapy method, Es has a unique role in postoperative recovery. Bone morphogenetic protein-2 (BMP-2) is the most commonly used bioactive molecule in in situ tissue engineering scaffolds, and it plays an important regulatory role in the whole process of bone injury repair. In this study, the osteogenic regulation of MC-3T3-E1 cells was studied by combining pulsed electrical stimulation (PES) and different concentrations of BMP-2. The results showed that PES and BMP-2 could synergically promote the proliferation of MC-3T3-E1 cells. The qPCR results of osteoblast-related genes showed that PES was synergistic with BMP-2 to promote osteoblast differentiation mainly through the regulation of the Smad/BMP and insulin like growth factor 1 (IGF1) signaling pathways. The expression level of alkaline phosphatase (ALP) and alizarin red staining further demonstrated the synergistic effect of PES and BMP-2 on promoting osteogenic differentiation and mineralization of cells. PES and BMP-2 could also synergically promote cell proliferation, expression of collagen I (COL-I) and ALP, and cell mineralization on the 3D-printed polylactic acid scaffold. These results suggest that the use of PES can enhance the osteogenic effect of in situ bone repair scaffolds containing BMP-2, reduce the dose of BMP-2 alone, and reduce the possible side effects of high-dose BMP-2 in vivo.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3107-3118"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone morphogenetic protein-2 and pulsed electrical stimulation synergistically promoted osteogenic differentiation on MC-3T3-E1 cells.\",\"authors\":\"Shaodong Xie, Deming Zeng, Hanwen Luo, Ping Zhong, Yu Wang, Zhiqiang Xu, Peibiao Zhang\",\"doi\":\"10.1007/s11010-023-04916-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical stimulation (ES) plays an important role in regulating cell osteoblast differentiation. As a noninvasive rehabilitation therapy method, Es has a unique role in postoperative recovery. Bone morphogenetic protein-2 (BMP-2) is the most commonly used bioactive molecule in in situ tissue engineering scaffolds, and it plays an important regulatory role in the whole process of bone injury repair. In this study, the osteogenic regulation of MC-3T3-E1 cells was studied by combining pulsed electrical stimulation (PES) and different concentrations of BMP-2. The results showed that PES and BMP-2 could synergically promote the proliferation of MC-3T3-E1 cells. The qPCR results of osteoblast-related genes showed that PES was synergistic with BMP-2 to promote osteoblast differentiation mainly through the regulation of the Smad/BMP and insulin like growth factor 1 (IGF1) signaling pathways. The expression level of alkaline phosphatase (ALP) and alizarin red staining further demonstrated the synergistic effect of PES and BMP-2 on promoting osteogenic differentiation and mineralization of cells. PES and BMP-2 could also synergically promote cell proliferation, expression of collagen I (COL-I) and ALP, and cell mineralization on the 3D-printed polylactic acid scaffold. These results suggest that the use of PES can enhance the osteogenic effect of in situ bone repair scaffolds containing BMP-2, reduce the dose of BMP-2 alone, and reduce the possible side effects of high-dose BMP-2 in vivo.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"3107-3118\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-023-04916-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-023-04916-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Bone morphogenetic protein-2 and pulsed electrical stimulation synergistically promoted osteogenic differentiation on MC-3T3-E1 cells.
Electrical stimulation (ES) plays an important role in regulating cell osteoblast differentiation. As a noninvasive rehabilitation therapy method, Es has a unique role in postoperative recovery. Bone morphogenetic protein-2 (BMP-2) is the most commonly used bioactive molecule in in situ tissue engineering scaffolds, and it plays an important regulatory role in the whole process of bone injury repair. In this study, the osteogenic regulation of MC-3T3-E1 cells was studied by combining pulsed electrical stimulation (PES) and different concentrations of BMP-2. The results showed that PES and BMP-2 could synergically promote the proliferation of MC-3T3-E1 cells. The qPCR results of osteoblast-related genes showed that PES was synergistic with BMP-2 to promote osteoblast differentiation mainly through the regulation of the Smad/BMP and insulin like growth factor 1 (IGF1) signaling pathways. The expression level of alkaline phosphatase (ALP) and alizarin red staining further demonstrated the synergistic effect of PES and BMP-2 on promoting osteogenic differentiation and mineralization of cells. PES and BMP-2 could also synergically promote cell proliferation, expression of collagen I (COL-I) and ALP, and cell mineralization on the 3D-printed polylactic acid scaffold. These results suggest that the use of PES can enhance the osteogenic effect of in situ bone repair scaffolds containing BMP-2, reduce the dose of BMP-2 alone, and reduce the possible side effects of high-dose BMP-2 in vivo.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.