高维度矢量破碎自适应脊回归

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-17 DOI:10.1007/s00180-023-01446-1
Jeongjin Lee, Taehwa Choi, Sangbum Choi
{"title":"高维度矢量破碎自适应脊回归","authors":"Jeongjin Lee, Taehwa Choi, Sangbum Choi","doi":"10.1007/s00180-023-01446-1","DOIUrl":null,"url":null,"abstract":"<p>Broken adaptive ridge (BAR) is a penalized regression method that performs variable selection via a computationally scalable surrogate to <span>\\(L_0\\)</span> regularization. The BAR regression has many appealing features; it converges to selection with <span>\\(L_0\\)</span> penalties as a result of reweighting <span>\\(L_2\\)</span> penalties, and satisfies the oracle property with grouping effect for highly correlated covariates. In this paper, we investigate the BAR procedure for variable selection in a semiparametric accelerated failure time model with complex high-dimensional censored data. Coupled with Buckley-James-type responses, BAR-based variable selection procedures can be performed when event times are censored in complex ways, such as right-censored, left-censored, or double-censored. Our approach utilizes a two-stage cyclic coordinate descent algorithm to minimize the objective function by iteratively estimating the pseudo survival response and regression coefficients along the direction of coordinates. Under some weak regularity conditions, we establish both the oracle property and the grouping effect of the proposed BAR estimator. Numerical studies are conducted to investigate the finite-sample performance of the proposed algorithm and an application to real data is provided as a data example.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Censored broken adaptive ridge regression in high-dimension\",\"authors\":\"Jeongjin Lee, Taehwa Choi, Sangbum Choi\",\"doi\":\"10.1007/s00180-023-01446-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Broken adaptive ridge (BAR) is a penalized regression method that performs variable selection via a computationally scalable surrogate to <span>\\\\(L_0\\\\)</span> regularization. The BAR regression has many appealing features; it converges to selection with <span>\\\\(L_0\\\\)</span> penalties as a result of reweighting <span>\\\\(L_2\\\\)</span> penalties, and satisfies the oracle property with grouping effect for highly correlated covariates. In this paper, we investigate the BAR procedure for variable selection in a semiparametric accelerated failure time model with complex high-dimensional censored data. Coupled with Buckley-James-type responses, BAR-based variable selection procedures can be performed when event times are censored in complex ways, such as right-censored, left-censored, or double-censored. Our approach utilizes a two-stage cyclic coordinate descent algorithm to minimize the objective function by iteratively estimating the pseudo survival response and regression coefficients along the direction of coordinates. Under some weak regularity conditions, we establish both the oracle property and the grouping effect of the proposed BAR estimator. Numerical studies are conducted to investigate the finite-sample performance of the proposed algorithm and an application to real data is provided as a data example.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-023-01446-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01446-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

断裂自适应脊(BAR)是一种惩罚回归方法,它通过可计算扩展的代用 \(L_0\) 正则化来执行变量选择。BAR 回归有很多吸引人的特点:它收敛于 \(L_0\) 惩罚的选择,作为 \(L_2\) 惩罚重新加权的结果,并且在高度相关的协变量上满足具有分组效应的 Oracle 特性。在本文中,我们研究了在具有复杂高维删减数据的半参数加速故障时间模型中进行变量选择的 BAR 程序。与 Buckley-James 型响应相结合,基于 BAR 的变量选择程序可在事件时间以复杂方式(如右删失、左删失或双删失)删失时执行。我们的方法采用两阶段循环坐标下降算法,通过沿坐标方向迭代估计伪生存响应和回归系数,使目标函数最小化。在一些弱正则性条件下,我们建立了所提出的 BAR 估计器的甲骨文属性和分组效应。我们进行了数值研究,以考察所提算法的有限样本性能,并提供了一个应用于真实数据的数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Censored broken adaptive ridge regression in high-dimension

Broken adaptive ridge (BAR) is a penalized regression method that performs variable selection via a computationally scalable surrogate to \(L_0\) regularization. The BAR regression has many appealing features; it converges to selection with \(L_0\) penalties as a result of reweighting \(L_2\) penalties, and satisfies the oracle property with grouping effect for highly correlated covariates. In this paper, we investigate the BAR procedure for variable selection in a semiparametric accelerated failure time model with complex high-dimensional censored data. Coupled with Buckley-James-type responses, BAR-based variable selection procedures can be performed when event times are censored in complex ways, such as right-censored, left-censored, or double-censored. Our approach utilizes a two-stage cyclic coordinate descent algorithm to minimize the objective function by iteratively estimating the pseudo survival response and regression coefficients along the direction of coordinates. Under some weak regularity conditions, we establish both the oracle property and the grouping effect of the proposed BAR estimator. Numerical studies are conducted to investigate the finite-sample performance of the proposed algorithm and an application to real data is provided as a data example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1