通过有监督的机器学习预测抗菌肽和抗菌剂的协同效应

Basak Olcay, Gizem D. Ozdemir, Mehmet A. Ozdemir, Utku K. Ercan, Onan Guren, Ozan Karaman
{"title":"通过有监督的机器学习预测抗菌肽和抗菌剂的协同效应","authors":"Basak Olcay, Gizem D. Ozdemir, Mehmet A. Ozdemir, Utku K. Ercan, Onan Guren, Ozan Karaman","doi":"10.1186/s42490-024-00075-z","DOIUrl":null,"url":null,"abstract":"Infectious diseases not only cause severe health problems but also burden the healthcare system. Therefore, the effective treatment of those diseases is crucial. Both conventional approaches, such as antimicrobial agents, and novel approaches, like antimicrobial peptides (AMPs), are used to treat infections. However, due to the drawbacks of current approaches, new solutions are still being investigated. One recent approach is the use of AMPs and antimicrobial agents in combination, but determining synergism is with a huge variety of AMPs time-consuming and requires multiple experimental studies. Machine learning (ML) algorithms are widely used to predict biological outcomes, particularly in the field of AMPs, but no previous research reported on predicting the synergistic effects of AMPs and antimicrobial agents. Several supervised ML models were implemented to accurately predict the synergistic effect of AMPs and antimicrobial agents. The results demonstrated that the hyperparameter-optimized Light Gradient Boosted Machine Classifier (oLGBMC) yielded the best test accuracy of 76.92% for predicting the synergistic effect. Besides, the feature importance analysis reveals that the target microbial species, the minimum inhibitory concentrations (MICs) of the AMP and the antimicrobial agents, and the used antimicrobial agent were the most important features for the prediction of synergistic effect, which aligns with recent experimental studies in the literature. This study reveals that ML algorithms can predict the synergistic activity of two different antimicrobial agents without the need for complex and time-consuming experimental procedures. The implications support that the ML models may not only reduce the experimental cost but also provide validation of experimental procedures.","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the synergistic effect of antimicrobial peptides and antimicrobial agents via supervised machine learning\",\"authors\":\"Basak Olcay, Gizem D. Ozdemir, Mehmet A. Ozdemir, Utku K. Ercan, Onan Guren, Ozan Karaman\",\"doi\":\"10.1186/s42490-024-00075-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infectious diseases not only cause severe health problems but also burden the healthcare system. Therefore, the effective treatment of those diseases is crucial. Both conventional approaches, such as antimicrobial agents, and novel approaches, like antimicrobial peptides (AMPs), are used to treat infections. However, due to the drawbacks of current approaches, new solutions are still being investigated. One recent approach is the use of AMPs and antimicrobial agents in combination, but determining synergism is with a huge variety of AMPs time-consuming and requires multiple experimental studies. Machine learning (ML) algorithms are widely used to predict biological outcomes, particularly in the field of AMPs, but no previous research reported on predicting the synergistic effects of AMPs and antimicrobial agents. Several supervised ML models were implemented to accurately predict the synergistic effect of AMPs and antimicrobial agents. The results demonstrated that the hyperparameter-optimized Light Gradient Boosted Machine Classifier (oLGBMC) yielded the best test accuracy of 76.92% for predicting the synergistic effect. Besides, the feature importance analysis reveals that the target microbial species, the minimum inhibitory concentrations (MICs) of the AMP and the antimicrobial agents, and the used antimicrobial agent were the most important features for the prediction of synergistic effect, which aligns with recent experimental studies in the literature. This study reveals that ML algorithms can predict the synergistic activity of two different antimicrobial agents without the need for complex and time-consuming experimental procedures. The implications support that the ML models may not only reduce the experimental cost but also provide validation of experimental procedures.\",\"PeriodicalId\":72425,\"journal\":{\"name\":\"BMC biomedical engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42490-024-00075-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-024-00075-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传染病不仅会造成严重的健康问题,还会给医疗系统带来负担。因此,有效治疗这些疾病至关重要。传统方法(如抗菌剂)和新型方法(如抗菌肽)都被用于治疗感染。然而,由于目前的方法存在缺陷,新的解决方案仍在研究之中。最近的一种方法是将 AMPs 和抗菌剂结合使用,但确定 AMPs 的协同作用非常耗时,需要进行多次实验研究。机器学习(ML)算法被广泛用于预测生物学结果,特别是在 AMPs 领域,但以前没有关于预测 AMPs 和抗菌剂协同作用的研究报告。为了准确预测 AMPs 和抗菌剂的协同效应,我们采用了几种有监督的 ML 模型。结果表明,超参数优化光梯度提升机分类器(oLGBMC)预测协同效应的测试准确率最高,达到 76.92%。此外,特征重要性分析表明,目标微生物种类、AMP 和抗菌剂的最低抑菌浓度(MICs)以及使用的抗菌剂是预测协同效应的最重要特征,这与近期文献中的实验研究结果一致。本研究揭示了 ML 算法可以预测两种不同抗菌剂的协同活性,而无需复杂耗时的实验过程。这表明 ML 模型不仅能降低实验成本,还能验证实验过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of the synergistic effect of antimicrobial peptides and antimicrobial agents via supervised machine learning
Infectious diseases not only cause severe health problems but also burden the healthcare system. Therefore, the effective treatment of those diseases is crucial. Both conventional approaches, such as antimicrobial agents, and novel approaches, like antimicrobial peptides (AMPs), are used to treat infections. However, due to the drawbacks of current approaches, new solutions are still being investigated. One recent approach is the use of AMPs and antimicrobial agents in combination, but determining synergism is with a huge variety of AMPs time-consuming and requires multiple experimental studies. Machine learning (ML) algorithms are widely used to predict biological outcomes, particularly in the field of AMPs, but no previous research reported on predicting the synergistic effects of AMPs and antimicrobial agents. Several supervised ML models were implemented to accurately predict the synergistic effect of AMPs and antimicrobial agents. The results demonstrated that the hyperparameter-optimized Light Gradient Boosted Machine Classifier (oLGBMC) yielded the best test accuracy of 76.92% for predicting the synergistic effect. Besides, the feature importance analysis reveals that the target microbial species, the minimum inhibitory concentrations (MICs) of the AMP and the antimicrobial agents, and the used antimicrobial agent were the most important features for the prediction of synergistic effect, which aligns with recent experimental studies in the literature. This study reveals that ML algorithms can predict the synergistic activity of two different antimicrobial agents without the need for complex and time-consuming experimental procedures. The implications support that the ML models may not only reduce the experimental cost but also provide validation of experimental procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol. Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study. The neurophysiology of sensorimotor prosthetic control. Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis. The effect of using the hip exoskeleton assistive (HEXA) robot compared to conventional physiotherapy on clinical functional outcomes in stroke patients with hemiplegia: a pilot randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1