溅射生长的氧化铜薄膜:生长压力和退火温度对其微观结构的影响

Ambati Mounika Sai Krishna , Kumar Babu Busi , Brindha Ramasubramanian , Vundrala Sumedha Reddy , Aniket Samanta , Seeram Ramakrishna , Siddhartha Ghosh , Sabyasachi Chakrabortty , Goutam Kumar Dalapati
{"title":"溅射生长的氧化铜薄膜:生长压力和退火温度对其微观结构的影响","authors":"Ambati Mounika Sai Krishna ,&nbsp;Kumar Babu Busi ,&nbsp;Brindha Ramasubramanian ,&nbsp;Vundrala Sumedha Reddy ,&nbsp;Aniket Samanta ,&nbsp;Seeram Ramakrishna ,&nbsp;Siddhartha Ghosh ,&nbsp;Sabyasachi Chakrabortty ,&nbsp;Goutam Kumar Dalapati","doi":"10.1016/j.memori.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><p>High-quality copper oxide (CuO) thin films were deposited on the silicon (Si) substrate at the room temperature using the physical vapour deposition (PVD) technique named radio frequency (RF) sputtering. The copper-oxide thin-films were single crystalline and of uniform thickness. Subsequently, the influence of growth pressure (low gas pressure - 3 mTorr and high gas pressure - 100 mTorr) and post growth annealing at different temperatures (300 °C to 700 °C) were investigated to understand the microstructural and morphological changes of the thin film. With the influence of growth pressure and post thermal annealing temperature, significant changes in crystallinity, surface roughness, and surface oxidation rate of the CuO thin film were detected, which were adequately analyzed via several characterization techniques. X-ray diffraction (XRD) patterns revealed the phase formation with good crystallinity of the film, which is substantiated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) characterization. Atomic force microscopy (AFM) images disclosed that the surface roughness of the film and grain size. By gaining insights into the structural and surface properties of CuO/Si thin films, this research presents new prospects for tuning of CuO phases, structures, and compositions for multifunctional applications.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"7 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000021/pdfft?md5=3e60f5934722fa98abe31cd0e021f670&pid=1-s2.0-S2773064624000021-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sputter grown CuO thin films: Impact of growth pressure and annealing temperature on their microstructural architectures\",\"authors\":\"Ambati Mounika Sai Krishna ,&nbsp;Kumar Babu Busi ,&nbsp;Brindha Ramasubramanian ,&nbsp;Vundrala Sumedha Reddy ,&nbsp;Aniket Samanta ,&nbsp;Seeram Ramakrishna ,&nbsp;Siddhartha Ghosh ,&nbsp;Sabyasachi Chakrabortty ,&nbsp;Goutam Kumar Dalapati\",\"doi\":\"10.1016/j.memori.2024.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-quality copper oxide (CuO) thin films were deposited on the silicon (Si) substrate at the room temperature using the physical vapour deposition (PVD) technique named radio frequency (RF) sputtering. The copper-oxide thin-films were single crystalline and of uniform thickness. Subsequently, the influence of growth pressure (low gas pressure - 3 mTorr and high gas pressure - 100 mTorr) and post growth annealing at different temperatures (300 °C to 700 °C) were investigated to understand the microstructural and morphological changes of the thin film. With the influence of growth pressure and post thermal annealing temperature, significant changes in crystallinity, surface roughness, and surface oxidation rate of the CuO thin film were detected, which were adequately analyzed via several characterization techniques. X-ray diffraction (XRD) patterns revealed the phase formation with good crystallinity of the film, which is substantiated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) characterization. Atomic force microscopy (AFM) images disclosed that the surface roughness of the film and grain size. By gaining insights into the structural and surface properties of CuO/Si thin films, this research presents new prospects for tuning of CuO phases, structures, and compositions for multifunctional applications.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"7 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000021/pdfft?md5=3e60f5934722fa98abe31cd0e021f670&pid=1-s2.0-S2773064624000021-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用名为射频(RF)溅射的物理气相沉积(PVD)技术,在室温下将高质量的氧化铜(CuO)薄膜沉积在硅(Si)基底上。氧化铜薄膜为单晶,厚度均匀。随后,研究了生长压力(低气体压力 - 3 mTorr 和高气体压力 - 100 mTorr)和不同温度(300 °C 至 700 °C)下生长后退火的影响,以了解薄膜的微观结构和形态变化。在生长压力和后热退火温度的影响下,发现氧化铜薄膜的结晶度、表面粗糙度和表面氧化率发生了显著变化,并通过多种表征技术对这些变化进行了充分分析。X 射线衍射(XRD)图显示薄膜形成了具有良好结晶度的相,拉曼光谱和 X 射线光电子能谱(XPS)表征也证实了这一点。原子力显微镜(AFM)图像显示了薄膜的表面粗糙度和晶粒尺寸。通过深入了解氧化铜/硅薄膜的结构和表面特性,这项研究为调整氧化铜相、结构和组成以实现多功能应用开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sputter grown CuO thin films: Impact of growth pressure and annealing temperature on their microstructural architectures

High-quality copper oxide (CuO) thin films were deposited on the silicon (Si) substrate at the room temperature using the physical vapour deposition (PVD) technique named radio frequency (RF) sputtering. The copper-oxide thin-films were single crystalline and of uniform thickness. Subsequently, the influence of growth pressure (low gas pressure - 3 mTorr and high gas pressure - 100 mTorr) and post growth annealing at different temperatures (300 °C to 700 °C) were investigated to understand the microstructural and morphological changes of the thin film. With the influence of growth pressure and post thermal annealing temperature, significant changes in crystallinity, surface roughness, and surface oxidation rate of the CuO thin film were detected, which were adequately analyzed via several characterization techniques. X-ray diffraction (XRD) patterns revealed the phase formation with good crystallinity of the film, which is substantiated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) characterization. Atomic force microscopy (AFM) images disclosed that the surface roughness of the film and grain size. By gaining insights into the structural and surface properties of CuO/Si thin films, this research presents new prospects for tuning of CuO phases, structures, and compositions for multifunctional applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1