电力硬件在环测试平台中电力电子转换器的物理量缩放方法

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2024-01-05 DOI:10.1109/OJIA.2024.3349480
Joseph Kiran Banda;Daniel Dos Santos Mota;Elisabetta Tedeschi
{"title":"电力硬件在环测试平台中电力电子转换器的物理量缩放方法","authors":"Joseph Kiran Banda;Daniel Dos Santos Mota;Elisabetta Tedeschi","doi":"10.1109/OJIA.2024.3349480","DOIUrl":null,"url":null,"abstract":"Power hardware in the loop (PHIL) is a modern experimental technique that allows the emulation of a full-scale converter (FSC) with the combination of a scaled-down converter (SDC), a power amplifier, and a real-time simulator, thus enabling the study of real-time interactions of power electronics with large power systems. However, assembling an accurate scaled-down replica of an FSC with off-the-shelf laboratory SDCs is practically impossible due to a mismatch in per unit losses, as well as in the impedance of the \n<inline-formula><tex-math>$L/LC/LCL$</tex-math></inline-formula>\n filter. Consequently, the scaled-up power flow capability of SDCs differs from that of FSCs, restricting emulation to smaller regions of the four quadrants than those corresponding to the FSCs' nominal active and reactive capacity. These PHIL test beds cannot be used to emulate FSCs demanding bidirectional active and reactive power flow. Any scaling method on SDCs, emulating the entire operation of FSCs, demands underutilization of SDCs, reducing the advantages of PHIL tests. This article, therefore, proposes a physics-informed scaling method that exploits power capability curves to emulate FSCs in all four quadrants of operation. This method is independent of SDC topology, filter type, and interfacing methods. A visual identification of semiconductor device constraints bounding the emulation is also presented, utilizing the physics of converter control. A theoretical analysis of the proposed method is presented, followed by validation with MATLAB simulations and experimental tests using a 50-kVA SDC.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"1-14"},"PeriodicalIF":7.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10381859","citationCount":"0","resultStr":"{\"title\":\"A Physics-Informed Scaling Method for Power Electronic Converters in Power Hardware-in-the-Loop Test Beds\",\"authors\":\"Joseph Kiran Banda;Daniel Dos Santos Mota;Elisabetta Tedeschi\",\"doi\":\"10.1109/OJIA.2024.3349480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power hardware in the loop (PHIL) is a modern experimental technique that allows the emulation of a full-scale converter (FSC) with the combination of a scaled-down converter (SDC), a power amplifier, and a real-time simulator, thus enabling the study of real-time interactions of power electronics with large power systems. However, assembling an accurate scaled-down replica of an FSC with off-the-shelf laboratory SDCs is practically impossible due to a mismatch in per unit losses, as well as in the impedance of the \\n<inline-formula><tex-math>$L/LC/LCL$</tex-math></inline-formula>\\n filter. Consequently, the scaled-up power flow capability of SDCs differs from that of FSCs, restricting emulation to smaller regions of the four quadrants than those corresponding to the FSCs' nominal active and reactive capacity. These PHIL test beds cannot be used to emulate FSCs demanding bidirectional active and reactive power flow. Any scaling method on SDCs, emulating the entire operation of FSCs, demands underutilization of SDCs, reducing the advantages of PHIL tests. This article, therefore, proposes a physics-informed scaling method that exploits power capability curves to emulate FSCs in all four quadrants of operation. This method is independent of SDC topology, filter type, and interfacing methods. A visual identification of semiconductor device constraints bounding the emulation is also presented, utilizing the physics of converter control. A theoretical analysis of the proposed method is presented, followed by validation with MATLAB simulations and experimental tests using a 50-kVA SDC.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"5 \",\"pages\":\"1-14\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10381859\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10381859/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10381859/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

环路中的功率硬件(PHIL)是一种现代实验技术,可通过按比例缩小的转换器(SDC)、功率放大器和实时模拟器的组合来模拟全比例转换器(FSC),从而研究电力电子设备与大型电力系统的实时互动。然而,由于单位损耗和 $L/LC/LCL$ 滤波器阻抗的不匹配,用现成的实验室 SDC 组装一个精确的 FSC 缩比复制品实际上是不可能的。因此,SDC 的按比例放大功率流能力与 FSC 不同,只能模拟四个象限中比 FSC 标称有功和无功容量更小的区域。这些 PHIL 试验台不能用于模拟要求双向有功和无功功率流的 FSC。任何在 SDC 上模拟整个 FSC 运行的缩放方法,都要求不充分利用 SDC,从而降低 PHIL 试验的优势。因此,本文提出了一种物理信息缩放方法,利用功率能力曲线模拟 FSC 在所有四个象限的运行。这种方法与 SDC 拓扑、滤波器类型和接口方法无关。此外,还利用转换器控制的物理学原理,提出了一种可视化识别半导体器件约束条件的仿真方法。本文对所提出的方法进行了理论分析,并通过 MATLAB 仿真和使用 50 千伏安 SDC 进行的实验测试进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Physics-Informed Scaling Method for Power Electronic Converters in Power Hardware-in-the-Loop Test Beds
Power hardware in the loop (PHIL) is a modern experimental technique that allows the emulation of a full-scale converter (FSC) with the combination of a scaled-down converter (SDC), a power amplifier, and a real-time simulator, thus enabling the study of real-time interactions of power electronics with large power systems. However, assembling an accurate scaled-down replica of an FSC with off-the-shelf laboratory SDCs is practically impossible due to a mismatch in per unit losses, as well as in the impedance of the $L/LC/LCL$ filter. Consequently, the scaled-up power flow capability of SDCs differs from that of FSCs, restricting emulation to smaller regions of the four quadrants than those corresponding to the FSCs' nominal active and reactive capacity. These PHIL test beds cannot be used to emulate FSCs demanding bidirectional active and reactive power flow. Any scaling method on SDCs, emulating the entire operation of FSCs, demands underutilization of SDCs, reducing the advantages of PHIL tests. This article, therefore, proposes a physics-informed scaling method that exploits power capability curves to emulate FSCs in all four quadrants of operation. This method is independent of SDC topology, filter type, and interfacing methods. A visual identification of semiconductor device constraints bounding the emulation is also presented, utilizing the physics of converter control. A theoretical analysis of the proposed method is presented, followed by validation with MATLAB simulations and experimental tests using a 50-kVA SDC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
Strategy Optimization by Means of Evolutionary Algorithms With Multiple Closing Criteria for Energy Trading A SiC Based Two-Stage Pulsed Power Converter System for Laser Diode Driving and Other Pulsed Current Applications Magnetostriction Effect on Vibration and Acoustic Noise in Permanent Magnet Synchronous Motors Model Predictive Control in Multilevel Inverters Part II: Renewable Energies and Grid Applications Model Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1