Hosam Elhalis , Mohamed Helmy , Sherilyn Ho , Sharon Leow , Yan Liu , Kumar Selvarajoo , Yvonne Chow
{"title":"将小球藻和小球藻确定为将氨基葡萄糖生物转化为有价值生物质的可持续生物体","authors":"Hosam Elhalis , Mohamed Helmy , Sherilyn Ho , Sharon Leow , Yan Liu , Kumar Selvarajoo , Yvonne Chow","doi":"10.1016/j.biotno.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Chitin is a major component of various wastes such as crustacean shells, filamentous fungi, and insects. Recently, food-safe biological and chemical processes converting chitin to glucosamine have been developed. Here, we studied microalgae that can uptake glucosamine as vital carbon and nitrogen sources for valuable alternative protein biomass. Utilizing data mining and bioinformatics analysis, we identified 29 species that contain the required enzymes for glucosamine to glucose conversion. The growth performance of the selected strains was examined, and glucosamine was used in different forms and concentrations. Glucose at a concentration of 2.5 g/L was required to initiate glucosamine metabolic degradation by <em>Chlorella vulgaris</em> and <em>Chlorella sorokiniana</em>. Glucosamine HCl and glucosamine phosphate showed maximum cell counts of about 8.5 and 9.0 log/mL for C. <em>sorokiniana</em> and <em>C. vulgaris</em> in 14 days, respectively. Enzymatic hydrolysis of glucosamine increased growth performance with <em>C. sorokiniana</em> by about 3 folds. The adapted strains were fast-growing and could double their dry biomasses during the same incubation time. In addition, adapted <em>C. sorokiniana</em> was able to tolerate three times glucosamine concentration in the medium. The study illustrated possible strategies for employing <em>C. sorokiniana</em> and <em>C. vulgaris</em> to convert glucosamine into valuable biomass in a more sustainable way.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 13-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000035/pdfft?md5=2d02dd1a924a37191fa8804cbe12d15c&pid=1-s2.0-S2665906924000035-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identifying Chlorella vulgaris and Chlorella sorokiniana as sustainable organisms to bioconvert glucosamine into valuable biomass\",\"authors\":\"Hosam Elhalis , Mohamed Helmy , Sherilyn Ho , Sharon Leow , Yan Liu , Kumar Selvarajoo , Yvonne Chow\",\"doi\":\"10.1016/j.biotno.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chitin is a major component of various wastes such as crustacean shells, filamentous fungi, and insects. Recently, food-safe biological and chemical processes converting chitin to glucosamine have been developed. Here, we studied microalgae that can uptake glucosamine as vital carbon and nitrogen sources for valuable alternative protein biomass. Utilizing data mining and bioinformatics analysis, we identified 29 species that contain the required enzymes for glucosamine to glucose conversion. The growth performance of the selected strains was examined, and glucosamine was used in different forms and concentrations. Glucose at a concentration of 2.5 g/L was required to initiate glucosamine metabolic degradation by <em>Chlorella vulgaris</em> and <em>Chlorella sorokiniana</em>. Glucosamine HCl and glucosamine phosphate showed maximum cell counts of about 8.5 and 9.0 log/mL for C. <em>sorokiniana</em> and <em>C. vulgaris</em> in 14 days, respectively. Enzymatic hydrolysis of glucosamine increased growth performance with <em>C. sorokiniana</em> by about 3 folds. The adapted strains were fast-growing and could double their dry biomasses during the same incubation time. In addition, adapted <em>C. sorokiniana</em> was able to tolerate three times glucosamine concentration in the medium. The study illustrated possible strategies for employing <em>C. sorokiniana</em> and <em>C. vulgaris</em> to convert glucosamine into valuable biomass in a more sustainable way.</p></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"5 \",\"pages\":\"Pages 13-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665906924000035/pdfft?md5=2d02dd1a924a37191fa8804cbe12d15c&pid=1-s2.0-S2665906924000035-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906924000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906924000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
甲壳素是甲壳类动物外壳、丝状真菌和昆虫等各种废物的主要成分。最近,将甲壳素转化为氨基葡萄糖的食品安全生物和化学工艺得到了发展。在这里,我们研究了能吸收葡萄糖胺作为重要碳源和氮源的微藻,以获得有价值的替代蛋白质生物质。利用数据挖掘和生物信息学分析,我们确定了 29 种含有将葡萄糖胺转化为葡萄糖所需酶类的藻类。我们考察了所选菌株的生长性能,并以不同的形式和浓度使用葡萄糖胺。普通小球藻和小球藻(Chlorella sorokiniana)需要浓度为 2.5 克/升的葡萄糖来启动葡萄糖胺代谢降解。盐酸葡糖胺和磷酸葡糖胺在 14 天内对索氏小球藻和普通小球藻的最大细胞计数分别约为 8.5 和 9.0 log/mL。葡萄糖胺的酶水解使 C. sorokiniana 的生长性能提高了约 3 倍。适应的菌株生长迅速,在相同的培养时间内,其干生物量可增加一倍。此外,适应后的高粱蝉能够耐受三倍于葡萄糖胺浓度的培养基。该研究说明了利用 C. sorokiniana 和 C. vulgaris 以更可持续的方式将氨基葡萄糖转化为有价值的生物量的可能策略。
Identifying Chlorella vulgaris and Chlorella sorokiniana as sustainable organisms to bioconvert glucosamine into valuable biomass
Chitin is a major component of various wastes such as crustacean shells, filamentous fungi, and insects. Recently, food-safe biological and chemical processes converting chitin to glucosamine have been developed. Here, we studied microalgae that can uptake glucosamine as vital carbon and nitrogen sources for valuable alternative protein biomass. Utilizing data mining and bioinformatics analysis, we identified 29 species that contain the required enzymes for glucosamine to glucose conversion. The growth performance of the selected strains was examined, and glucosamine was used in different forms and concentrations. Glucose at a concentration of 2.5 g/L was required to initiate glucosamine metabolic degradation by Chlorella vulgaris and Chlorella sorokiniana. Glucosamine HCl and glucosamine phosphate showed maximum cell counts of about 8.5 and 9.0 log/mL for C. sorokiniana and C. vulgaris in 14 days, respectively. Enzymatic hydrolysis of glucosamine increased growth performance with C. sorokiniana by about 3 folds. The adapted strains were fast-growing and could double their dry biomasses during the same incubation time. In addition, adapted C. sorokiniana was able to tolerate three times glucosamine concentration in the medium. The study illustrated possible strategies for employing C. sorokiniana and C. vulgaris to convert glucosamine into valuable biomass in a more sustainable way.