{"title":"Organ-on-chip technology: Opportunities and challenges","authors":"Santosh Kumar Srivastava , Guo Wei Foo , Nikhil Aggarwal , Matthew Wook Chang","doi":"10.1016/j.biotno.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Organ-on-chip (OOC) technology is an innovative approach that reproduces human organ structures and functions on microfluidic platforms, offering detailed insights into intricate physiological processes. This technology provides unique advantages over conventional in vitro and in vivo models and thus has the potential to become the new standard for biomedical research and drug screening. In this mini-review, we compare OOCs with conventional models, highlighting their differences, and present several applications of OOCs in biomedical research. Additionally, we highlight advancements in OOC technology, particularly in developing multiorgan systems, and discuss the challenges and future directions of this field.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 8-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000023/pdfft?md5=3d6c8e49497bcf18217860d3c12546f2&pid=1-s2.0-S2665906924000023-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906924000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Organ-on-chip (OOC) technology is an innovative approach that reproduces human organ structures and functions on microfluidic platforms, offering detailed insights into intricate physiological processes. This technology provides unique advantages over conventional in vitro and in vivo models and thus has the potential to become the new standard for biomedical research and drug screening. In this mini-review, we compare OOCs with conventional models, highlighting their differences, and present several applications of OOCs in biomedical research. Additionally, we highlight advancements in OOC technology, particularly in developing multiorgan systems, and discuss the challenges and future directions of this field.