{"title":"石墨的二原子分子散射","authors":"Maria Rutigliano, Fernando Pirani","doi":"10.1007/s12210-023-01215-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the last years, state-to-state molecular dynamics simulations of some basic elementary processes, occurring at the gas–surface interface in a wide range of temperatures and collision energies, have been performed by adopting new potential energy surfaces. In this contribution, our attention is mostly addressed to the role of long-range forces, determining the physisorption of gaseous molecules on the surface. Such forces, formulated in terms of the improved Lennard–Jones interaction potential model, control the formation of precursor or pre-reactive state that plays a crucial role in the dynamical evolution of molecules impinging on the surface in the range of low–intermediate collision kinetic energies. The study focuses on the collisions of H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CO, initially in their ground and excited vibro-rotational levels, on a graphite surface. The resulting dispersion coefficients, which control the capture of impinging molecules, are compared and found in good agreement with those available in the literature. New selectivity and peculiarities of scattered molecules, crucial to control the kinetics of elementary chemical processes occurring at the gas–surface interfaces under thermal and sub-thermal conditions, of interest in different applied fields, are highlighted.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":54501,"journal":{"name":"Rendiconti Lincei-Scienze Fisiche E Naturali","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering of diatomic molecules from graphite\",\"authors\":\"Maria Rutigliano, Fernando Pirani\",\"doi\":\"10.1007/s12210-023-01215-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In the last years, state-to-state molecular dynamics simulations of some basic elementary processes, occurring at the gas–surface interface in a wide range of temperatures and collision energies, have been performed by adopting new potential energy surfaces. In this contribution, our attention is mostly addressed to the role of long-range forces, determining the physisorption of gaseous molecules on the surface. Such forces, formulated in terms of the improved Lennard–Jones interaction potential model, control the formation of precursor or pre-reactive state that plays a crucial role in the dynamical evolution of molecules impinging on the surface in the range of low–intermediate collision kinetic energies. The study focuses on the collisions of H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CO, initially in their ground and excited vibro-rotational levels, on a graphite surface. The resulting dispersion coefficients, which control the capture of impinging molecules, are compared and found in good agreement with those available in the literature. New selectivity and peculiarities of scattered molecules, crucial to control the kinetics of elementary chemical processes occurring at the gas–surface interfaces under thermal and sub-thermal conditions, of interest in different applied fields, are highlighted.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic abstract</h3>\\n\",\"PeriodicalId\":54501,\"journal\":{\"name\":\"Rendiconti Lincei-Scienze Fisiche E Naturali\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Scienze Fisiche E Naturali\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s12210-023-01215-8\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Scienze Fisiche E Naturali","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s12210-023-01215-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
摘要 在过去几年中,通过采用新的势能面,对气体-表面界面在宽温度和碰撞能量范围内发生的一些基本基本过程进行了状态-状态分子动力学模拟。在这篇论文中,我们主要关注长程力的作用,它决定了气体分子在表面上的物理吸附。这些作用力是根据改进的伦纳德-琼斯相互作用势模型制定的,它们控制着前驱体或前反应状态的形成,而前驱体或前反应状态在中低碰撞动能范围内分子撞击表面的动态演化过程中起着至关重要的作用。研究重点是 H2、O2、N2 和 CO 在石墨表面的碰撞,这些分子最初处于基态和激发振动旋转态。研究比较了由此得出的控制撞击分子俘获的分散系数,发现这些系数与文献中的系数非常一致。该研究强调了散射分子的新选择性和特殊性,这对于控制热和亚热条件下气体-表面界面上发生的基本化学过程的动力学至关重要,在不同的应用领域都具有重要意义。
In the last years, state-to-state molecular dynamics simulations of some basic elementary processes, occurring at the gas–surface interface in a wide range of temperatures and collision energies, have been performed by adopting new potential energy surfaces. In this contribution, our attention is mostly addressed to the role of long-range forces, determining the physisorption of gaseous molecules on the surface. Such forces, formulated in terms of the improved Lennard–Jones interaction potential model, control the formation of precursor or pre-reactive state that plays a crucial role in the dynamical evolution of molecules impinging on the surface in the range of low–intermediate collision kinetic energies. The study focuses on the collisions of H2, O2, N2 and CO, initially in their ground and excited vibro-rotational levels, on a graphite surface. The resulting dispersion coefficients, which control the capture of impinging molecules, are compared and found in good agreement with those available in the literature. New selectivity and peculiarities of scattered molecules, crucial to control the kinetics of elementary chemical processes occurring at the gas–surface interfaces under thermal and sub-thermal conditions, of interest in different applied fields, are highlighted.
期刊介绍:
Rendiconti is the interdisciplinary scientific journal of the Accademia dei Lincei, the Italian National Academy, situated in Rome, which publishes original articles in the fi elds of geosciences, envi ronmental sciences, and biological and biomedi cal sciences. Particular interest is accorded to papers dealing with modern trends in the natural sciences, with interdisciplinary relationships and with the roots and historical development of these disciplines.