聚类后差异检验:应用于生态和生物数据的有效推断和实际考虑因素

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-01-17 DOI:10.1016/j.csda.2023.107916
Benjamin Hivert , Denis Agniel , Rodolphe Thiébaut , Boris P. Hejblum
{"title":"聚类后差异检验:应用于生态和生物数据的有效推断和实际考虑因素","authors":"Benjamin Hivert ,&nbsp;Denis Agniel ,&nbsp;Rodolphe Thiébaut ,&nbsp;Boris P. Hejblum","doi":"10.1016/j.csda.2023.107916","DOIUrl":null,"url":null,"abstract":"<div><p><span>Clustering is part of unsupervised analysis methods that group samples into homogeneous and separate subgroups of observations also called clusters. To interpret the clusters, statistical hypothesis testing<span> is often used to infer the variables that significantly separate the estimated clusters from each other. However, data-driven hypotheses are thus used for the inference process because the hypotheses are derived from the clustering results. This double use of the data leads traditional hypothesis test to fail to control the Type I error rate particularly because of uncertainty in the </span></span>clustering process and the potential artificial differences it could create. Three novel statistical hypothesis tests are introduced, each designed to account for the clustering process. These tests efficiently control the Type I error rate by identifying only variables that contain a true signal separating groups of observations. The proposed tests were applied in two distinct contexts: animal ecology and immunology, demonstrating the relevance of the results with real datasets.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data\",\"authors\":\"Benjamin Hivert ,&nbsp;Denis Agniel ,&nbsp;Rodolphe Thiébaut ,&nbsp;Boris P. Hejblum\",\"doi\":\"10.1016/j.csda.2023.107916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Clustering is part of unsupervised analysis methods that group samples into homogeneous and separate subgroups of observations also called clusters. To interpret the clusters, statistical hypothesis testing<span> is often used to infer the variables that significantly separate the estimated clusters from each other. However, data-driven hypotheses are thus used for the inference process because the hypotheses are derived from the clustering results. This double use of the data leads traditional hypothesis test to fail to control the Type I error rate particularly because of uncertainty in the </span></span>clustering process and the potential artificial differences it could create. Three novel statistical hypothesis tests are introduced, each designed to account for the clustering process. These tests efficiently control the Type I error rate by identifying only variables that contain a true signal separating groups of observations. The proposed tests were applied in two distinct contexts: animal ecology and immunology, demonstrating the relevance of the results with real datasets.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794732300227X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732300227X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

聚类是无监督分析方法的一部分,它将样本分成同质且独立的观测子群,也称为聚类。为了解释聚类,通常使用统计假设检验来推断将估计聚类彼此显著区分开来的变量。然而,由于假设是从聚类结果中推导出来的,因此推论过程中使用了数据驱动的假设。这种对数据的双重使用导致传统的假设检验无法控制 I 类错误率,特别是因为聚类过程中的不确定性及其可能造成的人为差异。本文介绍了三种新的统计假设检验,每种检验的设计都考虑到了聚类过程。这些检验通过仅识别包含真正信号的变量来区分观察组,从而有效控制 I 类错误率。所提出的检验方法被应用于动物生态学和免疫学这两个不同的领域,证明了其与真实数据集的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data

Clustering is part of unsupervised analysis methods that group samples into homogeneous and separate subgroups of observations also called clusters. To interpret the clusters, statistical hypothesis testing is often used to infer the variables that significantly separate the estimated clusters from each other. However, data-driven hypotheses are thus used for the inference process because the hypotheses are derived from the clustering results. This double use of the data leads traditional hypothesis test to fail to control the Type I error rate particularly because of uncertainty in the clustering process and the potential artificial differences it could create. Three novel statistical hypothesis tests are introduced, each designed to account for the clustering process. These tests efficiently control the Type I error rate by identifying only variables that contain a true signal separating groups of observations. The proposed tests were applied in two distinct contexts: animal ecology and immunology, demonstrating the relevance of the results with real datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Goodness–of–fit tests based on the min–characteristic function Editorial Board A switching state-space transmission model for tracking epidemics and assessing interventions Empirical Bayes Poisson matrix completion Transfer learning via random forests: A one-shot federated approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1