空间随机域各向同性协方差函数的混合参数类

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-16 DOI:10.1007/s11004-023-10123-4
Alfredo Alegría, Fabián Ramírez, Emilio Porcu
{"title":"空间随机域各向同性协方差函数的混合参数类","authors":"Alfredo Alegría, Fabián Ramírez, Emilio Porcu","doi":"10.1007/s11004-023-10123-4","DOIUrl":null,"url":null,"abstract":"<p>Covariance functions are the core of spatial statistics, stochastic processes, machine learning, and many other theoretical and applied disciplines. The properties of the covariance function at small and large distances determine the geometric attributes of the associated Gaussian random field. Covariance functions that allow one to specify both local and global properties are certainly in demand. This paper provides a method for finding new classes of covariance functions having such properties. We refer to these models as hybrid, as they are obtained as scale mixtures of piecewise covariance kernels against measures that are also defined as piecewise linear combinations of parametric families of measures. To illustrate our methodology, we provide new families of covariance functions that are proved to be richer than other well-known families proposed in earlier literature. More precisely, we derive a hybrid Cauchy–Matérn model, which allows us to index both long memory and mean square differentiability of the random field, and a hybrid hole-effect–Matérn model which is capable of attaining negative values (hole effect) while preserving the local attributes of the traditional Matérn model. Our findings are illustrated through numerical studies with both simulated and real data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Parametric Classes of Isotropic Covariance Functions for Spatial Random Fields\",\"authors\":\"Alfredo Alegría, Fabián Ramírez, Emilio Porcu\",\"doi\":\"10.1007/s11004-023-10123-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covariance functions are the core of spatial statistics, stochastic processes, machine learning, and many other theoretical and applied disciplines. The properties of the covariance function at small and large distances determine the geometric attributes of the associated Gaussian random field. Covariance functions that allow one to specify both local and global properties are certainly in demand. This paper provides a method for finding new classes of covariance functions having such properties. We refer to these models as hybrid, as they are obtained as scale mixtures of piecewise covariance kernels against measures that are also defined as piecewise linear combinations of parametric families of measures. To illustrate our methodology, we provide new families of covariance functions that are proved to be richer than other well-known families proposed in earlier literature. More precisely, we derive a hybrid Cauchy–Matérn model, which allows us to index both long memory and mean square differentiability of the random field, and a hybrid hole-effect–Matérn model which is capable of attaining negative values (hole effect) while preserving the local attributes of the traditional Matérn model. Our findings are illustrated through numerical studies with both simulated and real data.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-023-10123-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10123-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

协方差函数是空间统计学、随机过程、机器学习以及许多其他理论和应用学科的核心。协方差函数在小距离和大距离上的特性决定了相关高斯随机场的几何属性。人们当然需要能同时指定局部和全局属性的协方差函数。本文提供了一种方法,用于寻找具有此类属性的新类协方差函数。我们将这些模型称为混合模型,因为它们是针对也被定义为参数测量族片断线性组合的测量值的片断协方差核的尺度混合物。为了说明我们的方法,我们提供了新的协方差函数族,证明它们比早期文献中提出的其他著名族更丰富。更准确地说,我们推导出了一个考奇-马特恩混合模型,它允许我们同时索引随机场的长记忆和均方差性;以及一个洞效应-马特恩混合模型,它能够获得负值(洞效应),同时保留传统马特恩模型的局部属性。我们通过对模拟数据和真实数据的数值研究来说明我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Parametric Classes of Isotropic Covariance Functions for Spatial Random Fields

Covariance functions are the core of spatial statistics, stochastic processes, machine learning, and many other theoretical and applied disciplines. The properties of the covariance function at small and large distances determine the geometric attributes of the associated Gaussian random field. Covariance functions that allow one to specify both local and global properties are certainly in demand. This paper provides a method for finding new classes of covariance functions having such properties. We refer to these models as hybrid, as they are obtained as scale mixtures of piecewise covariance kernels against measures that are also defined as piecewise linear combinations of parametric families of measures. To illustrate our methodology, we provide new families of covariance functions that are proved to be richer than other well-known families proposed in earlier literature. More precisely, we derive a hybrid Cauchy–Matérn model, which allows us to index both long memory and mean square differentiability of the random field, and a hybrid hole-effect–Matérn model which is capable of attaining negative values (hole effect) while preserving the local attributes of the traditional Matérn model. Our findings are illustrated through numerical studies with both simulated and real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1