中蒙特森林火灾的时空模式:与区域气候的关系

IF 4.6 2区 环境科学与生态学 Q1 ECOLOGY Ecological Processes Pub Date : 2024-01-19 DOI:10.1186/s13717-023-00481-6
Pablo Eugenio Villagra, Erica Cesca, Leandro Manuel Alvarez, Silvia Delgado, Ricardo Villalba
{"title":"中蒙特森林火灾的时空模式:与区域气候的关系","authors":"Pablo Eugenio Villagra, Erica Cesca, Leandro Manuel Alvarez, Silvia Delgado, Ricardo Villalba","doi":"10.1186/s13717-023-00481-6","DOIUrl":null,"url":null,"abstract":"Natural and anthropogenic wildfires burn large areas of arid and semi-arid forests with significant socio-economic and environmental impacts. Fire regimes are controlled by climate, vegetation type, and anthropogenic factors such as ignition sources and human-induced disturbances. Projections of climate and land-use change suggest that these controlling factors will change, altering fire regimes in the near future. In the southern Central Monte, Mendoza, Argentina, the factors that modulate the fire temporal and spatial variability are poorly understood. We reconstructed the fire history of southeast of Mendoza from 1984 to 2023 and investigated the relationships between fire extent and climate variability at seasonal and interannual scales. Burned areas were determined using Google Earth Engine by processing Landsat 5-TM, Landsat 7-ETM+ , and Landsat 8-OLI-TIRS sensor imagery. The region exhibited high spatial and temporal variability in fire occurrence, being a mosaic of areas with different fire histories and recovery times. Between 1985 and 2023, fire recurrence ranged from sites unburned to sites with up to 14 fires. The occurrence of large fires was strongly favored by a combination of a year with abundant spring–early summer precipitation, which favors fuel accumulation, followed by a year of low spring–early summer precipitation. Precipitation and burnt area showed a very pronounced 6–7 year cycle, suggesting a dominant climatic control on fire occurrence. Fire distribution in southeastern Mendoza forests is not homogeneous, resulting in a mosaic of patches with different fire histories. This heterogeneity may be related to vegetation patterns and land use. The temporal variability of fires is strongly influenced by climate variability, which would promote fuel production and subsequent drying. Large fires are concentrated in periods of high interannual precipitation variability. Climate change scenarios predict an increase in temperature and precipitation variability in the region, suggesting future changes in fire dynamics. Our results contribute to the development of fire guidelines for southeastern Mendoza forests, focusing on periods of wet years followed by dry years that favor fire occurrence and spread.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and temporal patterns of forest fires in the Central Monte: relationships with regional climate\",\"authors\":\"Pablo Eugenio Villagra, Erica Cesca, Leandro Manuel Alvarez, Silvia Delgado, Ricardo Villalba\",\"doi\":\"10.1186/s13717-023-00481-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural and anthropogenic wildfires burn large areas of arid and semi-arid forests with significant socio-economic and environmental impacts. Fire regimes are controlled by climate, vegetation type, and anthropogenic factors such as ignition sources and human-induced disturbances. Projections of climate and land-use change suggest that these controlling factors will change, altering fire regimes in the near future. In the southern Central Monte, Mendoza, Argentina, the factors that modulate the fire temporal and spatial variability are poorly understood. We reconstructed the fire history of southeast of Mendoza from 1984 to 2023 and investigated the relationships between fire extent and climate variability at seasonal and interannual scales. Burned areas were determined using Google Earth Engine by processing Landsat 5-TM, Landsat 7-ETM+ , and Landsat 8-OLI-TIRS sensor imagery. The region exhibited high spatial and temporal variability in fire occurrence, being a mosaic of areas with different fire histories and recovery times. Between 1985 and 2023, fire recurrence ranged from sites unburned to sites with up to 14 fires. The occurrence of large fires was strongly favored by a combination of a year with abundant spring–early summer precipitation, which favors fuel accumulation, followed by a year of low spring–early summer precipitation. Precipitation and burnt area showed a very pronounced 6–7 year cycle, suggesting a dominant climatic control on fire occurrence. Fire distribution in southeastern Mendoza forests is not homogeneous, resulting in a mosaic of patches with different fire histories. This heterogeneity may be related to vegetation patterns and land use. The temporal variability of fires is strongly influenced by climate variability, which would promote fuel production and subsequent drying. Large fires are concentrated in periods of high interannual precipitation variability. Climate change scenarios predict an increase in temperature and precipitation variability in the region, suggesting future changes in fire dynamics. Our results contribute to the development of fire guidelines for southeastern Mendoza forests, focusing on periods of wet years followed by dry years that favor fire occurrence and spread.\",\"PeriodicalId\":11419,\"journal\":{\"name\":\"Ecological Processes\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Processes\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s13717-023-00481-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-023-00481-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自然和人为野火烧毁了大片干旱和半干旱森林,对社会经济和环境造成了重大影响。火灾机制受气候、植被类型以及点火源和人为干扰等人为因素的控制。对气候和土地使用变化的预测表明,这些控制因素将会发生变化,从而在不久的将来改变火灾发生机制。在阿根廷门多萨中蒙地南部,人们对影响火灾时空变化的因素知之甚少。我们重建了门多萨东南部从 1984 年到 2023 年的火灾历史,并研究了火灾范围与季节和年际尺度气候变异之间的关系。通过处理 Landsat 5-TM、Landsat 7-ETM+ 和 Landsat 8-OLI-TIRS 传感器图像,使用谷歌地球引擎确定了燃烧区域。该地区火灾发生的时空变异性很高,由不同火灾历史和恢复时间的地区拼凑而成。在 1985 年至 2023 年期间,火灾发生率从未曾发生过火灾的地点到发生过多达 14 次火灾的地点不等。春季至初夏降水量丰富的年份有利于燃料的积累,而春季至初夏降水量较低的年份则更有利于大火的发生。降水量和烧毁面积呈现出非常明显的 6-7 年周期,表明气候对火灾的发生起着主导作用。门多萨州东南部森林的火灾分布并不均匀,形成了不同火灾历史的斑块。这种异质性可能与植被模式和土地利用有关。火灾的时间变化受气候变异的影响很大,气候变异会促进燃料的产生和随后的干燥。大火集中发生在年际降水量变化较大的时期。根据气候变化情景预测,该地区的气温和降水变率将增加,这表明未来火灾动态将发生变化。我们的研究结果有助于为门多萨州东南部森林制定防火指南,重点关注有利于火灾发生和蔓延的潮湿年和干燥年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial and temporal patterns of forest fires in the Central Monte: relationships with regional climate
Natural and anthropogenic wildfires burn large areas of arid and semi-arid forests with significant socio-economic and environmental impacts. Fire regimes are controlled by climate, vegetation type, and anthropogenic factors such as ignition sources and human-induced disturbances. Projections of climate and land-use change suggest that these controlling factors will change, altering fire regimes in the near future. In the southern Central Monte, Mendoza, Argentina, the factors that modulate the fire temporal and spatial variability are poorly understood. We reconstructed the fire history of southeast of Mendoza from 1984 to 2023 and investigated the relationships between fire extent and climate variability at seasonal and interannual scales. Burned areas were determined using Google Earth Engine by processing Landsat 5-TM, Landsat 7-ETM+ , and Landsat 8-OLI-TIRS sensor imagery. The region exhibited high spatial and temporal variability in fire occurrence, being a mosaic of areas with different fire histories and recovery times. Between 1985 and 2023, fire recurrence ranged from sites unburned to sites with up to 14 fires. The occurrence of large fires was strongly favored by a combination of a year with abundant spring–early summer precipitation, which favors fuel accumulation, followed by a year of low spring–early summer precipitation. Precipitation and burnt area showed a very pronounced 6–7 year cycle, suggesting a dominant climatic control on fire occurrence. Fire distribution in southeastern Mendoza forests is not homogeneous, resulting in a mosaic of patches with different fire histories. This heterogeneity may be related to vegetation patterns and land use. The temporal variability of fires is strongly influenced by climate variability, which would promote fuel production and subsequent drying. Large fires are concentrated in periods of high interannual precipitation variability. Climate change scenarios predict an increase in temperature and precipitation variability in the region, suggesting future changes in fire dynamics. Our results contribute to the development of fire guidelines for southeastern Mendoza forests, focusing on periods of wet years followed by dry years that favor fire occurrence and spread.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Processes
Ecological Processes Environmental Science-Ecological Modeling
CiteScore
8.50
自引率
4.20%
发文量
64
审稿时长
13 weeks
期刊介绍: Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.
期刊最新文献
Effects of warming on soil fungal community and its function in a temperate steppe Non-linear response of plant caloric value to N addition and mowing treatments in a meadow steppe Spatial patterns of causality in temperate silvopastoral systems: a perspective on nitrification stability in response to flooding Functional and phylogenetic structure of mammals along elevational gradients in the Central and East Himalayas Fine spatial scale assessment of structure and configuration of vegetation cover for northern bobwhites in grazed pastures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1