{"title":"基于数据分解和数据增强的集合学习和深度学习的煤炭价格预测混合方法","authors":"Jing Tang, Yida Guo, Yilin Han","doi":"10.1108/dta-07-2023-0377","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for predicting the coal price index to enhance coal purchase strategies for coal-consuming enterprises and provide crucial information for global carbon emission reduction.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The proposed coal price forecasting system combines data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. It addresses the challenge of merging low-resolution and high-resolution data by adaptively combining both types of data and filling in missing gaps through interpolation for internal missing data and self-supervision for initiate/terminal missing data. The system employs self-supervised learning to complete the filling of complex missing data.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The ensemble model, which combines long short-term memory, XGBoost and support vector regression, demonstrated the best prediction performance among the tested models. It exhibited superior accuracy and stability across multiple indices in two datasets, namely the Bohai-Rim steam-coal price index and coal daily settlement price.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed coal price forecasting system stands out as it integrates data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. Moreover, the system pioneers the use of self-supervised learning for filling in complex missing data, contributing to its originality and effectiveness.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid method for forecasting coal price based on ensemble learning and deep learning with data decomposition and data enhancement\",\"authors\":\"Jing Tang, Yida Guo, Yilin Han\",\"doi\":\"10.1108/dta-07-2023-0377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for predicting the coal price index to enhance coal purchase strategies for coal-consuming enterprises and provide crucial information for global carbon emission reduction.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The proposed coal price forecasting system combines data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. It addresses the challenge of merging low-resolution and high-resolution data by adaptively combining both types of data and filling in missing gaps through interpolation for internal missing data and self-supervision for initiate/terminal missing data. The system employs self-supervised learning to complete the filling of complex missing data.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The ensemble model, which combines long short-term memory, XGBoost and support vector regression, demonstrated the best prediction performance among the tested models. It exhibited superior accuracy and stability across multiple indices in two datasets, namely the Bohai-Rim steam-coal price index and coal daily settlement price.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed coal price forecasting system stands out as it integrates data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. Moreover, the system pioneers the use of self-supervised learning for filling in complex missing data, contributing to its originality and effectiveness.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-07-2023-0377\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-07-2023-0377","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A hybrid method for forecasting coal price based on ensemble learning and deep learning with data decomposition and data enhancement
Purpose
Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for predicting the coal price index to enhance coal purchase strategies for coal-consuming enterprises and provide crucial information for global carbon emission reduction.
Design/methodology/approach
The proposed coal price forecasting system combines data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. It addresses the challenge of merging low-resolution and high-resolution data by adaptively combining both types of data and filling in missing gaps through interpolation for internal missing data and self-supervision for initiate/terminal missing data. The system employs self-supervised learning to complete the filling of complex missing data.
Findings
The ensemble model, which combines long short-term memory, XGBoost and support vector regression, demonstrated the best prediction performance among the tested models. It exhibited superior accuracy and stability across multiple indices in two datasets, namely the Bohai-Rim steam-coal price index and coal daily settlement price.
Originality/value
The proposed coal price forecasting system stands out as it integrates data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. Moreover, the system pioneers the use of self-supervised learning for filling in complex missing data, contributing to its originality and effectiveness.