{"title":"自适应贝叶斯信息借用法,用于寻找和优化亚组特异性剂量。","authors":"Jingyi Zhang, Ruitao Lin, Xin Chen, Fangrong Yan","doi":"10.1177/17407745231212193","DOIUrl":null,"url":null,"abstract":"<p><p>In precision oncology, integrating multiple cancer patient subgroups into a single master protocol allows for the simultaneous assessment of treatment effects in these subgroups and promotes the sharing of information between them, ultimately reducing sample sizes and costs and enhancing scientific validity. However, the safety and efficacy of these therapies may vary across different subgroups, resulting in heterogeneous outcomes. Therefore, identifying subgroup-specific optimal doses in early-phase clinical trials is crucial for the development of future trials. In this article, we review various innovative Bayesian information-borrowing strategies that aim to determine and optimize subgroup-specific doses. Specifically, we discuss Bayesian hierarchical modeling, Bayesian clustering, Bayesian model averaging or selection, pairwise borrowing, and other relevant approaches. By employing these Bayesian information-borrowing methods, investigators can gain a better understanding of the intricate relationships between dose, toxicity, and efficacy in each subgroup. This increased understanding significantly improves the chances of identifying an optimal dose tailored to each specific subgroup. Furthermore, we present several practical recommendations to guide the design of future early-phase oncology trials involving multiple subgroups when using the Bayesian information-borrowing methods.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"308-321"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132956/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive Bayesian information borrowing methods for finding and optimizing subgroup-specific doses.\",\"authors\":\"Jingyi Zhang, Ruitao Lin, Xin Chen, Fangrong Yan\",\"doi\":\"10.1177/17407745231212193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In precision oncology, integrating multiple cancer patient subgroups into a single master protocol allows for the simultaneous assessment of treatment effects in these subgroups and promotes the sharing of information between them, ultimately reducing sample sizes and costs and enhancing scientific validity. However, the safety and efficacy of these therapies may vary across different subgroups, resulting in heterogeneous outcomes. Therefore, identifying subgroup-specific optimal doses in early-phase clinical trials is crucial for the development of future trials. In this article, we review various innovative Bayesian information-borrowing strategies that aim to determine and optimize subgroup-specific doses. Specifically, we discuss Bayesian hierarchical modeling, Bayesian clustering, Bayesian model averaging or selection, pairwise borrowing, and other relevant approaches. By employing these Bayesian information-borrowing methods, investigators can gain a better understanding of the intricate relationships between dose, toxicity, and efficacy in each subgroup. This increased understanding significantly improves the chances of identifying an optimal dose tailored to each specific subgroup. Furthermore, we present several practical recommendations to guide the design of future early-phase oncology trials involving multiple subgroups when using the Bayesian information-borrowing methods.</p>\",\"PeriodicalId\":10685,\"journal\":{\"name\":\"Clinical Trials\",\"volume\":\" \",\"pages\":\"308-321\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132956/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Trials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17407745231212193\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745231212193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Adaptive Bayesian information borrowing methods for finding and optimizing subgroup-specific doses.
In precision oncology, integrating multiple cancer patient subgroups into a single master protocol allows for the simultaneous assessment of treatment effects in these subgroups and promotes the sharing of information between them, ultimately reducing sample sizes and costs and enhancing scientific validity. However, the safety and efficacy of these therapies may vary across different subgroups, resulting in heterogeneous outcomes. Therefore, identifying subgroup-specific optimal doses in early-phase clinical trials is crucial for the development of future trials. In this article, we review various innovative Bayesian information-borrowing strategies that aim to determine and optimize subgroup-specific doses. Specifically, we discuss Bayesian hierarchical modeling, Bayesian clustering, Bayesian model averaging or selection, pairwise borrowing, and other relevant approaches. By employing these Bayesian information-borrowing methods, investigators can gain a better understanding of the intricate relationships between dose, toxicity, and efficacy in each subgroup. This increased understanding significantly improves the chances of identifying an optimal dose tailored to each specific subgroup. Furthermore, we present several practical recommendations to guide the design of future early-phase oncology trials involving multiple subgroups when using the Bayesian information-borrowing methods.
期刊介绍:
Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.