Hua Tan , Xuecheng Li , Xiaojin Dong , Wenfeng Zhong , Tong Zhan , Yanhui Qiao , Hao Ma , Junjiang Teng , Jiaping Zhu
{"title":"在掺杂 N 的碳包封非贵金属合金催化剂上催化愈创木酚与甲酸的加氢脱氧转移生成苯酚","authors":"Hua Tan , Xuecheng Li , Xiaojin Dong , Wenfeng Zhong , Tong Zhan , Yanhui Qiao , Hao Ma , Junjiang Teng , Jiaping Zhu","doi":"10.1016/j.fuproc.2024.108045","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic transfer hydrodeoxygenation of lignin-derived guaiacol using formic acid (FA) as a hydrogen donor is a sustainable and secure way to obtain value-added phenol. In this work, we prepared N-doped carbon encapsulated CoNi and FeCoNi nanoparticles (CoNi@NC and FeCoNi@NC) for this reaction and found that NC shells rather than the alloy cores are the active sites. Ultraviolet photoelectron spectroscopy (UPS) results and Density Functional Theory (DFT) calculations suggested that Mott-Schottky heterostructures were constructed in CoNi@NC and FeCoNi@NC, leading to the spontaneous electron transfer from alloy cores with smaller work functions to NC shells. DFT calculations also confirm that the number of electrons transfer from alloy cores to NC shells with 1.46 a.u. and 1.59 a.u. for CoNi@NC and FeCoNi@NC, respectively. The increased electron density on NC shells improved the absorption strength of reactants and the intermediate, thereby reducing the energy barriers for the dehydrogenation of FA and hydrodeoxygenation of guaiacol. FeCoNi@NC, due to its higher surface electron density, exhibited better catalytic activity than that of CoNi@NC, 93.4% conversion of guaiacol and 87.3% selectivity to phenol can be achieved at 260 °C within 12 h, which is even better than commercially available Pd/C catalyst. The mechanistic studies revealed that guaiacol is first converted into catechol via the demethylation and hydrolysis, then to phenol via hydrogenolysis over FeCoNi@NC with the aid of FA. Moreover, the magnetically separatable FeCoNi@NC possessed high catalytic stability because NC shells protect alloy cores from the acidic solution.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"254 ","pages":"Article 108045"},"PeriodicalIF":7.2000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000158/pdfft?md5=36e0f9a97d35333e9bafdad11484da43&pid=1-s2.0-S0378382024000158-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Catalytic transfer hydrodeoxygenation of guaiacol to phenol with formic acid over N-doped carbon encapsulated non-noble alloy catalysts\",\"authors\":\"Hua Tan , Xuecheng Li , Xiaojin Dong , Wenfeng Zhong , Tong Zhan , Yanhui Qiao , Hao Ma , Junjiang Teng , Jiaping Zhu\",\"doi\":\"10.1016/j.fuproc.2024.108045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Catalytic transfer hydrodeoxygenation of lignin-derived guaiacol using formic acid (FA) as a hydrogen donor is a sustainable and secure way to obtain value-added phenol. In this work, we prepared N-doped carbon encapsulated CoNi and FeCoNi nanoparticles (CoNi@NC and FeCoNi@NC) for this reaction and found that NC shells rather than the alloy cores are the active sites. Ultraviolet photoelectron spectroscopy (UPS) results and Density Functional Theory (DFT) calculations suggested that Mott-Schottky heterostructures were constructed in CoNi@NC and FeCoNi@NC, leading to the spontaneous electron transfer from alloy cores with smaller work functions to NC shells. DFT calculations also confirm that the number of electrons transfer from alloy cores to NC shells with 1.46 a.u. and 1.59 a.u. for CoNi@NC and FeCoNi@NC, respectively. The increased electron density on NC shells improved the absorption strength of reactants and the intermediate, thereby reducing the energy barriers for the dehydrogenation of FA and hydrodeoxygenation of guaiacol. FeCoNi@NC, due to its higher surface electron density, exhibited better catalytic activity than that of CoNi@NC, 93.4% conversion of guaiacol and 87.3% selectivity to phenol can be achieved at 260 °C within 12 h, which is even better than commercially available Pd/C catalyst. The mechanistic studies revealed that guaiacol is first converted into catechol via the demethylation and hydrolysis, then to phenol via hydrogenolysis over FeCoNi@NC with the aid of FA. Moreover, the magnetically separatable FeCoNi@NC possessed high catalytic stability because NC shells protect alloy cores from the acidic solution.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"254 \",\"pages\":\"Article 108045\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000158/pdfft?md5=36e0f9a97d35333e9bafdad11484da43&pid=1-s2.0-S0378382024000158-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000158\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000158","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Catalytic transfer hydrodeoxygenation of guaiacol to phenol with formic acid over N-doped carbon encapsulated non-noble alloy catalysts
Catalytic transfer hydrodeoxygenation of lignin-derived guaiacol using formic acid (FA) as a hydrogen donor is a sustainable and secure way to obtain value-added phenol. In this work, we prepared N-doped carbon encapsulated CoNi and FeCoNi nanoparticles (CoNi@NC and FeCoNi@NC) for this reaction and found that NC shells rather than the alloy cores are the active sites. Ultraviolet photoelectron spectroscopy (UPS) results and Density Functional Theory (DFT) calculations suggested that Mott-Schottky heterostructures were constructed in CoNi@NC and FeCoNi@NC, leading to the spontaneous electron transfer from alloy cores with smaller work functions to NC shells. DFT calculations also confirm that the number of electrons transfer from alloy cores to NC shells with 1.46 a.u. and 1.59 a.u. for CoNi@NC and FeCoNi@NC, respectively. The increased electron density on NC shells improved the absorption strength of reactants and the intermediate, thereby reducing the energy barriers for the dehydrogenation of FA and hydrodeoxygenation of guaiacol. FeCoNi@NC, due to its higher surface electron density, exhibited better catalytic activity than that of CoNi@NC, 93.4% conversion of guaiacol and 87.3% selectivity to phenol can be achieved at 260 °C within 12 h, which is even better than commercially available Pd/C catalyst. The mechanistic studies revealed that guaiacol is first converted into catechol via the demethylation and hydrolysis, then to phenol via hydrogenolysis over FeCoNi@NC with the aid of FA. Moreover, the magnetically separatable FeCoNi@NC possessed high catalytic stability because NC shells protect alloy cores from the acidic solution.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.