Zhuowen Deng , Tao Wang , Yun Zheng , Wanli Zhang , Yong-Huan Yun
{"title":"食品真实性的深度学习:最新进展和未来趋势","authors":"Zhuowen Deng , Tao Wang , Yun Zheng , Wanli Zhang , Yong-Huan Yun","doi":"10.1016/j.tifs.2024.104344","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The development of fast, efficient, accurate, and reliable techniques and methods for food<span> authenticity identification is crucial for food quality assurance. Traditional machine learning algorithms often have limitations when handling complex sample data, exhibiting a suboptimal performance, particularly when addressing intricate problems and in large-scale data applications. In recent years, the emergence of deep learning algorithms has heralded revolutionary breakthroughs in the field of food authenticity identification, and the ongoing deep learning developments will continue to propel advancements in this field.</span></p></div><div><h3>Scope and approach</h3><p>This review presents an overview of the deep learning algorithms and various categories of deep neural network models and structures, including the multilayer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), autoencoder (AE), generative adversarial network (GAN), and attention mechanism (AM). It also summarizes the applications of these models, as well as the use of integrated models together with various analytical techniques in food authenticity. In addition, the latest developments and trends in deep learning in this field are discussed.</p></div><div><h3>Key findings and conclusions</h3><p>The formidable capabilities of deep learning algorithms, in synergy with a broad array of analytical techniques, enhance the precision and efficiency of the analysis of the diverse food components. Concurrently, they have distinct advantages over traditional machine learning algorithms, showing significant potential for food authenticity identification. Although the use of deep learning still faces some challenges, with continuous technological advancements, more deep learning applications are expected to emerge in the food industry in the future to safeguard food authenticity.</p></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"144 ","pages":"Article 104344"},"PeriodicalIF":15.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning in food authenticity: Recent advances and future trends\",\"authors\":\"Zhuowen Deng , Tao Wang , Yun Zheng , Wanli Zhang , Yong-Huan Yun\",\"doi\":\"10.1016/j.tifs.2024.104344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The development of fast, efficient, accurate, and reliable techniques and methods for food<span> authenticity identification is crucial for food quality assurance. Traditional machine learning algorithms often have limitations when handling complex sample data, exhibiting a suboptimal performance, particularly when addressing intricate problems and in large-scale data applications. In recent years, the emergence of deep learning algorithms has heralded revolutionary breakthroughs in the field of food authenticity identification, and the ongoing deep learning developments will continue to propel advancements in this field.</span></p></div><div><h3>Scope and approach</h3><p>This review presents an overview of the deep learning algorithms and various categories of deep neural network models and structures, including the multilayer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), autoencoder (AE), generative adversarial network (GAN), and attention mechanism (AM). It also summarizes the applications of these models, as well as the use of integrated models together with various analytical techniques in food authenticity. In addition, the latest developments and trends in deep learning in this field are discussed.</p></div><div><h3>Key findings and conclusions</h3><p>The formidable capabilities of deep learning algorithms, in synergy with a broad array of analytical techniques, enhance the precision and efficiency of the analysis of the diverse food components. Concurrently, they have distinct advantages over traditional machine learning algorithms, showing significant potential for food authenticity identification. Although the use of deep learning still faces some challenges, with continuous technological advancements, more deep learning applications are expected to emerge in the food industry in the future to safeguard food authenticity.</p></div>\",\"PeriodicalId\":441,\"journal\":{\"name\":\"Trends in Food Science & Technology\",\"volume\":\"144 \",\"pages\":\"Article 104344\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Food Science & Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924224424000207\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424000207","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Deep learning in food authenticity: Recent advances and future trends
Background
The development of fast, efficient, accurate, and reliable techniques and methods for food authenticity identification is crucial for food quality assurance. Traditional machine learning algorithms often have limitations when handling complex sample data, exhibiting a suboptimal performance, particularly when addressing intricate problems and in large-scale data applications. In recent years, the emergence of deep learning algorithms has heralded revolutionary breakthroughs in the field of food authenticity identification, and the ongoing deep learning developments will continue to propel advancements in this field.
Scope and approach
This review presents an overview of the deep learning algorithms and various categories of deep neural network models and structures, including the multilayer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), autoencoder (AE), generative adversarial network (GAN), and attention mechanism (AM). It also summarizes the applications of these models, as well as the use of integrated models together with various analytical techniques in food authenticity. In addition, the latest developments and trends in deep learning in this field are discussed.
Key findings and conclusions
The formidable capabilities of deep learning algorithms, in synergy with a broad array of analytical techniques, enhance the precision and efficiency of the analysis of the diverse food components. Concurrently, they have distinct advantages over traditional machine learning algorithms, showing significant potential for food authenticity identification. Although the use of deep learning still faces some challenges, with continuous technological advancements, more deep learning applications are expected to emerge in the food industry in the future to safeguard food authenticity.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.