{"title":"正常大鼠和产前丙戊酸暴露大鼠前额叶皮层和小脑的光声粘弹性评估","authors":"Zahra Hosseindokht , Shima Davoudi , Mona Rahdar , Mahyar Janahmadi , Mohammadreza Kolahdouz , Pezhman Sasanpoour","doi":"10.1016/j.pacs.2024.100590","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical properties of brain tissues are from principal features from different points of view; diagnosis, the performance of the brain and neurological disorders. Particularly viscoelastic properties of the brain tissues are determinative. In this study based on a proposed accurate and non-invasive method, we have measured the viscoelastic properties of prefrontal cortex and cerebellum, two important brain regions involved in motor learning and pathophysiology of autism spectrum disorder (ASD). In this regard, using photoacoustic systems, viscoelastic properties of tissues from the cerebellum and prefrontal cortex of normal and prenatal VPA (Valproic acid)-exposed (i.e. autistic-like) offspring rats are measured. Results of our study show that the cerebellums of normal tissues are stiffer than the tissue obtained from autistic-like rats, while the viscoelasticity of the prefrontal cortex of normal tissues is higher than that of autistic ones. The proposed method for the measurement of viscoelastic properties of the brain tissue has the potential not only for the fundamental studies but as a diagnosis technique.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"36 ","pages":"Article 100590"},"PeriodicalIF":7.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000077/pdfft?md5=2514f2bd30fb87a11a8ff979ffcd3164&pid=1-s2.0-S2213597924000077-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Photoacoustic viscoelasticity assessment of prefrontal cortex and cerebellum in normal and prenatal valproic acid-exposed rats\",\"authors\":\"Zahra Hosseindokht , Shima Davoudi , Mona Rahdar , Mahyar Janahmadi , Mohammadreza Kolahdouz , Pezhman Sasanpoour\",\"doi\":\"10.1016/j.pacs.2024.100590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanical properties of brain tissues are from principal features from different points of view; diagnosis, the performance of the brain and neurological disorders. Particularly viscoelastic properties of the brain tissues are determinative. In this study based on a proposed accurate and non-invasive method, we have measured the viscoelastic properties of prefrontal cortex and cerebellum, two important brain regions involved in motor learning and pathophysiology of autism spectrum disorder (ASD). In this regard, using photoacoustic systems, viscoelastic properties of tissues from the cerebellum and prefrontal cortex of normal and prenatal VPA (Valproic acid)-exposed (i.e. autistic-like) offspring rats are measured. Results of our study show that the cerebellums of normal tissues are stiffer than the tissue obtained from autistic-like rats, while the viscoelasticity of the prefrontal cortex of normal tissues is higher than that of autistic ones. The proposed method for the measurement of viscoelastic properties of the brain tissue has the potential not only for the fundamental studies but as a diagnosis technique.</p></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"36 \",\"pages\":\"Article 100590\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000077/pdfft?md5=2514f2bd30fb87a11a8ff979ffcd3164&pid=1-s2.0-S2213597924000077-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000077\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Photoacoustic viscoelasticity assessment of prefrontal cortex and cerebellum in normal and prenatal valproic acid-exposed rats
Mechanical properties of brain tissues are from principal features from different points of view; diagnosis, the performance of the brain and neurological disorders. Particularly viscoelastic properties of the brain tissues are determinative. In this study based on a proposed accurate and non-invasive method, we have measured the viscoelastic properties of prefrontal cortex and cerebellum, two important brain regions involved in motor learning and pathophysiology of autism spectrum disorder (ASD). In this regard, using photoacoustic systems, viscoelastic properties of tissues from the cerebellum and prefrontal cortex of normal and prenatal VPA (Valproic acid)-exposed (i.e. autistic-like) offspring rats are measured. Results of our study show that the cerebellums of normal tissues are stiffer than the tissue obtained from autistic-like rats, while the viscoelasticity of the prefrontal cortex of normal tissues is higher than that of autistic ones. The proposed method for the measurement of viscoelastic properties of the brain tissue has the potential not only for the fundamental studies but as a diagnosis technique.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.