{"title":"氮化镓衬底上的 11.2 W/mm 功率密度氮化镓/氮化镓高电子迁移率晶体管","authors":"Yansheng Hu, Yuangang Wang, Wei Wang, Yuanjie Lv, Hongyu Guo, Zhirong Zhang, Hao Yu, Xubo Song, Xingye zhou, Tingting Han, Shaobo Dun, Hongyu Liu, Aimin Bu, Zhihong Feng","doi":"10.1088/1674-4926/45/1/012501","DOIUrl":null,"url":null,"abstract":"In this letter, high power density AlGaN/GaN high electron-mobility transistors (HEMTs) on a freestanding GaN substrate are reported. An asymmetric Γ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance. The breakdown voltage (BV) is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92 <italic toggle=\"yes\">μ</italic>m. A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V. The maximum oscillation frequency (<italic toggle=\"yes\">f</italic>\n<sub>max</sub>) and unity current gain cut-off frequency (<italic toggle=\"yes\">f</italic>\n<sub>t</sub>) of the AlGaN/GaN HEMTs exceed 30 and 20 GHz, respectively. The results demonstrate the potential of AlGaN/GaN HEMTs on free-standing GaN substrates for microwave power applications.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"199 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate\",\"authors\":\"Yansheng Hu, Yuangang Wang, Wei Wang, Yuanjie Lv, Hongyu Guo, Zhirong Zhang, Hao Yu, Xubo Song, Xingye zhou, Tingting Han, Shaobo Dun, Hongyu Liu, Aimin Bu, Zhihong Feng\",\"doi\":\"10.1088/1674-4926/45/1/012501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, high power density AlGaN/GaN high electron-mobility transistors (HEMTs) on a freestanding GaN substrate are reported. An asymmetric Γ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance. The breakdown voltage (BV) is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92 <italic toggle=\\\"yes\\\">μ</italic>m. A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V. The maximum oscillation frequency (<italic toggle=\\\"yes\\\">f</italic>\\n<sub>max</sub>) and unity current gain cut-off frequency (<italic toggle=\\\"yes\\\">f</italic>\\n<sub>t</sub>) of the AlGaN/GaN HEMTs exceed 30 and 20 GHz, respectively. The results demonstrate the potential of AlGaN/GaN HEMTs on free-standing GaN substrates for microwave power applications.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/45/1/012501\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/45/1/012501","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate
In this letter, high power density AlGaN/GaN high electron-mobility transistors (HEMTs) on a freestanding GaN substrate are reported. An asymmetric Γ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance. The breakdown voltage (BV) is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92 μm. A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V. The maximum oscillation frequency (fmax) and unity current gain cut-off frequency (ft) of the AlGaN/GaN HEMTs exceed 30 and 20 GHz, respectively. The results demonstrate the potential of AlGaN/GaN HEMTs on free-standing GaN substrates for microwave power applications.