{"title":"城市环境如何利用认知计算框架影响公众情绪和体育活动","authors":"","doi":"10.1016/j.foar.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Location-based social media data provides a new perspective for understanding the relationship between human behavior and urban environments. However, further research is needed to determine the application of cognitive computing in urban environments and physical activities. This study proposes a cognitive computing framework for urban environments and human activities that extracts knowledge from structured and unstructured data through natural language processing and computer vision techniques. This paper utilizes a Naive Bayes Model constructed based on random reviews, as well as semantic segmentation and instant segmentation algorithms based on convolutional neural networks to obtain information about urban environments and human behavior from social media data and other geospatial resources. This study examines the relationship between the urban environment and residents' activity, including spatiotemporal behavior, public sentiment, and physical activity. The study found statistically significant results in subgroup analyses regarding the effects of urban environments on sentiment and physical activity, which also exhibited a strong social gradient consistent with traditional findings. This study validates the feasibility of using cognitive computing based on social media data to explore environmental behaviors, providing technical support for updating health promotion policies.</div></div>","PeriodicalId":51662,"journal":{"name":"Frontiers of Architectural Research","volume":"13 5","pages":"Pages 946-959"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How urban environments affect public sentiment and physical activity using a cognitive computing framework\",\"authors\":\"\",\"doi\":\"10.1016/j.foar.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Location-based social media data provides a new perspective for understanding the relationship between human behavior and urban environments. However, further research is needed to determine the application of cognitive computing in urban environments and physical activities. This study proposes a cognitive computing framework for urban environments and human activities that extracts knowledge from structured and unstructured data through natural language processing and computer vision techniques. This paper utilizes a Naive Bayes Model constructed based on random reviews, as well as semantic segmentation and instant segmentation algorithms based on convolutional neural networks to obtain information about urban environments and human behavior from social media data and other geospatial resources. This study examines the relationship between the urban environment and residents' activity, including spatiotemporal behavior, public sentiment, and physical activity. The study found statistically significant results in subgroup analyses regarding the effects of urban environments on sentiment and physical activity, which also exhibited a strong social gradient consistent with traditional findings. This study validates the feasibility of using cognitive computing based on social media data to explore environmental behaviors, providing technical support for updating health promotion policies.</div></div>\",\"PeriodicalId\":51662,\"journal\":{\"name\":\"Frontiers of Architectural Research\",\"volume\":\"13 5\",\"pages\":\"Pages 946-959\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Architectural Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095263523001103\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Architectural Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095263523001103","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
How urban environments affect public sentiment and physical activity using a cognitive computing framework
Location-based social media data provides a new perspective for understanding the relationship between human behavior and urban environments. However, further research is needed to determine the application of cognitive computing in urban environments and physical activities. This study proposes a cognitive computing framework for urban environments and human activities that extracts knowledge from structured and unstructured data through natural language processing and computer vision techniques. This paper utilizes a Naive Bayes Model constructed based on random reviews, as well as semantic segmentation and instant segmentation algorithms based on convolutional neural networks to obtain information about urban environments and human behavior from social media data and other geospatial resources. This study examines the relationship between the urban environment and residents' activity, including spatiotemporal behavior, public sentiment, and physical activity. The study found statistically significant results in subgroup analyses regarding the effects of urban environments on sentiment and physical activity, which also exhibited a strong social gradient consistent with traditional findings. This study validates the feasibility of using cognitive computing based on social media data to explore environmental behaviors, providing technical support for updating health promotion policies.
期刊介绍:
Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering achievements in the field of architecture research. Subject areas include the primary branches of architecture, such as architectural design and theory, architectural science and technology, urban planning, landscaping architecture, existing building renovation, and architectural heritage conservation. The journal encourages studies based on a rigorous scientific approach and state-of-the-art technology. All published papers reflect original research works and basic theories, models, computing, and design in architecture. High-quality papers addressing the social aspects of architecture are also welcome. This journal is strictly peer-reviewed and accepts only original manuscripts submitted in English.