用化学方法合成以功能性多壁碳纳米管为支撑的双金属镍钴纳米粒子:表征与氢能生成

IF 2.8 3区 化学 Q2 CHEMISTRY, APPLIED Topics in Catalysis Pub Date : 2024-01-22 DOI:10.1007/s11244-024-01907-x
Najmeh Zare, Fatemeh Karimi, Elif Esra Altuner, Hussein Mashkoor, Rima Nour Elhouda Tiri, Fulya Gulbagca, Majede Bijad, Ali Cherif, Fatih Sen
{"title":"用化学方法合成以功能性多壁碳纳米管为支撑的双金属镍钴纳米粒子:表征与氢能生成","authors":"Najmeh Zare, Fatemeh Karimi, Elif Esra Altuner, Hussein Mashkoor, Rima Nour Elhouda Tiri, Fulya Gulbagca, Majede Bijad, Ali Cherif, Fatih Sen","doi":"10.1007/s11244-024-01907-x","DOIUrl":null,"url":null,"abstract":"<p>In this study, nickel-cobalt@functionalized multi-walled carbon nanoparticles (NiCo@f-MWCNT NPs) were synthesized, analysed, and used for hydrogen generation via methanolysis on NaBH<sub>4</sub>. For the NPs synthesis, two steps were conducted (i.e., i: MWCNT was functionalized in an acid medium to support NPs (f-MWCNT); ii: NiCo NPs were synthesized and supplemented with f-MWCNT). Various characterization techniques were used to examine the morphological structure of NiCo@f-MWCNT NPs. The transmission electron microscope (TEM) results showed that the NPs were sized as 3.941 ± 1.094 nm with a spherical structure. The X-ray diffraction analysis (XRD) results indicated an average crystalline size of 1.46 nm. The evaluation of the catalytic performance for hydrogen production revealed that the turnover frequency (TOF) was calculated to be 2934.4 min<sup>− 1</sup> with activation energy (Ea) and enthalpy (∆H) of 39.29 kJ/mol and 36.74 kJ/mol, respectively, which indicates high viability for hydrogen transport and generation application and processes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"23 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Bimetallic Nickel-Cobalt Nanoparticles Supported by Functional Multi-Walled Carbon Nanotubes by Chemical Methods: Characterization and Hydrogen Energy Generation\",\"authors\":\"Najmeh Zare, Fatemeh Karimi, Elif Esra Altuner, Hussein Mashkoor, Rima Nour Elhouda Tiri, Fulya Gulbagca, Majede Bijad, Ali Cherif, Fatih Sen\",\"doi\":\"10.1007/s11244-024-01907-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, nickel-cobalt@functionalized multi-walled carbon nanoparticles (NiCo@f-MWCNT NPs) were synthesized, analysed, and used for hydrogen generation via methanolysis on NaBH<sub>4</sub>. For the NPs synthesis, two steps were conducted (i.e., i: MWCNT was functionalized in an acid medium to support NPs (f-MWCNT); ii: NiCo NPs were synthesized and supplemented with f-MWCNT). Various characterization techniques were used to examine the morphological structure of NiCo@f-MWCNT NPs. The transmission electron microscope (TEM) results showed that the NPs were sized as 3.941 ± 1.094 nm with a spherical structure. The X-ray diffraction analysis (XRD) results indicated an average crystalline size of 1.46 nm. The evaluation of the catalytic performance for hydrogen production revealed that the turnover frequency (TOF) was calculated to be 2934.4 min<sup>− 1</sup> with activation energy (Ea) and enthalpy (∆H) of 39.29 kJ/mol and 36.74 kJ/mol, respectively, which indicates high viability for hydrogen transport and generation application and processes.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11244-024-01907-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01907-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究合成、分析了镍-钴@功能化多壁碳纳米粒子(NiCo@f-MWCNT NPs),并将其用于在 NaBH4 上进行甲醇分解制氢。NPs 的合成分为两个步骤(即 i. 将镍钴@f-MWCNT(NiCo@f-MWCNT NPs)官能化; ii:在酸性介质中对 MWCNT 进行功能化,以支持 NPs(f-MWCNT);ii:合成 NiCo NPs 并用 f-MWCNT 补充)。使用各种表征技术来研究 NiCo@f-MWCNT NPs 的形态结构。透射电子显微镜(TEM)结果表明,NPs 的尺寸为 3.941 ± 1.094 nm,呈球形结构。X 射线衍射分析(XRD)结果表明,平均结晶尺寸为 1.46 nm。对制氢催化性能的评估表明,计算得出的翻转频率(TOF)为 2934.4 min- 1,活化能(Ea)和焓(∆H)分别为 39.29 kJ/mol 和 36.74 kJ/mol,这表明该催化剂在氢气运输和生成应用及过程中具有很高的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Bimetallic Nickel-Cobalt Nanoparticles Supported by Functional Multi-Walled Carbon Nanotubes by Chemical Methods: Characterization and Hydrogen Energy Generation

In this study, nickel-cobalt@functionalized multi-walled carbon nanoparticles (NiCo@f-MWCNT NPs) were synthesized, analysed, and used for hydrogen generation via methanolysis on NaBH4. For the NPs synthesis, two steps were conducted (i.e., i: MWCNT was functionalized in an acid medium to support NPs (f-MWCNT); ii: NiCo NPs were synthesized and supplemented with f-MWCNT). Various characterization techniques were used to examine the morphological structure of NiCo@f-MWCNT NPs. The transmission electron microscope (TEM) results showed that the NPs were sized as 3.941 ± 1.094 nm with a spherical structure. The X-ray diffraction analysis (XRD) results indicated an average crystalline size of 1.46 nm. The evaluation of the catalytic performance for hydrogen production revealed that the turnover frequency (TOF) was calculated to be 2934.4 min− 1 with activation energy (Ea) and enthalpy (∆H) of 39.29 kJ/mol and 36.74 kJ/mol, respectively, which indicates high viability for hydrogen transport and generation application and processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Catalysis
Topics in Catalysis 化学-物理化学
CiteScore
5.70
自引率
5.60%
发文量
197
审稿时长
2 months
期刊介绍: Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief. The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
期刊最新文献
Biocrude oil Production Upgrading by Catalytic Assisted Hydrothermal Liquefaction of Underutilized non-edible seed Biomass Revolutionizing Waste Management: Solidification of Landfill Leachates Using Alkali-Activated Slag Synthesis of α,ω-Primary Hydroxyl-Terminated Polyether Polyols Using Prussian Blue Analogs as Catalysts Experimental Verification of Low-Pressure Kinetics Model for Direct Synthesis of Dimethyl Carbonate Over CeO2 Catalyst Flow Semi-continuous Mechanochemistry as a Versatile and Efficient Tool for the Synthesis of Hydrocalumite and the Isomerization of Glucose to Fructose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1