{"title":"芹菜素通过增加 miR-21 的表达促进巨噬细胞 M2 型极化,从而加速糖尿病小鼠的伤口愈合。","authors":"Ke Li, Lijun Wu, Jingting Jiang","doi":"10.1007/s11010-023-04885-y","DOIUrl":null,"url":null,"abstract":"<p><p>The alteration of inflammatory phenotype by macrophage polarization plays an important role in diabetic wound repair. Apigenin has been reported to be anti-inflammatory and promote tissue repair; however, whether it regulates macrophage polarization to participate in diabetic wound repair remains to be investigated. We found that apigenin promoted miR-21 expression in LPS-stimulated RAW264.7 cells, inhibited cellular M1-type factor TNF-α and IL-1β secretion and increased M2-type factor IL-10 and TGF-β secretion, and accelerated macrophage conversion from M1 type to M2 type, whereas this protective effect of apigenin was counteracted by a miR-21 inhibitor. Moreover, we established a macrophage-HUVECs cell in vitro co-culture system and found that apigenin accelerated the migration, proliferation, and VEGF secretion of HUVECs by promoting macrophage miR-21 expression. Further, mechanistic studies revealed that this was mediated by the TLR4/Myd88/NF-κB axis. In in vivo study, diabetic mice had significantly delayed wound healing compared to non-diabetic mice, accelerated wound healing in apigenin-treated diabetic mice, and decreased M1-type macrophages and increased M2-type macrophages in wound tissues.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3119-3127"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apigenin accelerates wound healing in diabetic mice by promoting macrophage M2-type polarization via increasing miR-21 expression.\",\"authors\":\"Ke Li, Lijun Wu, Jingting Jiang\",\"doi\":\"10.1007/s11010-023-04885-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The alteration of inflammatory phenotype by macrophage polarization plays an important role in diabetic wound repair. Apigenin has been reported to be anti-inflammatory and promote tissue repair; however, whether it regulates macrophage polarization to participate in diabetic wound repair remains to be investigated. We found that apigenin promoted miR-21 expression in LPS-stimulated RAW264.7 cells, inhibited cellular M1-type factor TNF-α and IL-1β secretion and increased M2-type factor IL-10 and TGF-β secretion, and accelerated macrophage conversion from M1 type to M2 type, whereas this protective effect of apigenin was counteracted by a miR-21 inhibitor. Moreover, we established a macrophage-HUVECs cell in vitro co-culture system and found that apigenin accelerated the migration, proliferation, and VEGF secretion of HUVECs by promoting macrophage miR-21 expression. Further, mechanistic studies revealed that this was mediated by the TLR4/Myd88/NF-κB axis. In in vivo study, diabetic mice had significantly delayed wound healing compared to non-diabetic mice, accelerated wound healing in apigenin-treated diabetic mice, and decreased M1-type macrophages and increased M2-type macrophages in wound tissues.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"3119-3127\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-023-04885-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-023-04885-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Apigenin accelerates wound healing in diabetic mice by promoting macrophage M2-type polarization via increasing miR-21 expression.
The alteration of inflammatory phenotype by macrophage polarization plays an important role in diabetic wound repair. Apigenin has been reported to be anti-inflammatory and promote tissue repair; however, whether it regulates macrophage polarization to participate in diabetic wound repair remains to be investigated. We found that apigenin promoted miR-21 expression in LPS-stimulated RAW264.7 cells, inhibited cellular M1-type factor TNF-α and IL-1β secretion and increased M2-type factor IL-10 and TGF-β secretion, and accelerated macrophage conversion from M1 type to M2 type, whereas this protective effect of apigenin was counteracted by a miR-21 inhibitor. Moreover, we established a macrophage-HUVECs cell in vitro co-culture system and found that apigenin accelerated the migration, proliferation, and VEGF secretion of HUVECs by promoting macrophage miR-21 expression. Further, mechanistic studies revealed that this was mediated by the TLR4/Myd88/NF-κB axis. In in vivo study, diabetic mice had significantly delayed wound healing compared to non-diabetic mice, accelerated wound healing in apigenin-treated diabetic mice, and decreased M1-type macrophages and increased M2-type macrophages in wound tissues.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.