应用 Naïve Bayes 方法确定印度尼西亚智能计划 (PIP) 的奖学金获得者。

A. Nur, N. Nurhidayati, Imam Fathurrahman
{"title":"应用 Naïve Bayes 方法确定印度尼西亚智能计划 (PIP) 的奖学金获得者。","authors":"A. Nur, N. Nurhidayati, Imam Fathurrahman","doi":"10.29408/jit.v7i1.23995","DOIUrl":null,"url":null,"abstract":"PIP is the provision of educational cash assistance to school-aged children from underprivileged families who are marked with a smart Indonesia card (KIP). The purpose of this research is to determine the performance of the Naïve Bayes method in classifying data on students who are eligible and who are not eligible to receive a PIP scholarship at SMAN 1 Sukamulia, because this school is still experiencing problems in the decision-making process for determining potential PIP scholarship recipients, because there are no a system that can assist in processing student data that is eligible and not eligible to get the PIP scholarship. Therefore, for data processing, researchers tried to implement a new system with the Data Mining concept using the Naïve Bayes method, by carrying out 9 tests using Cross Validation starting from K-Fold Validation 2 to 10, obtaining the highest accuracy results in the 9th test. using K-Fold Validation 10 which is equal to 92.81%. Also obtained was an Area Under Curve (AUC) value of 0.973%, where AUC is a parameter used in classification analysis to determine the best model for predicting a class or attribute. AUC itself has a value range of 0-1, which means that the closer the AUC value is to 1, the better the prediction or diagnosis of the attribute","PeriodicalId":13567,"journal":{"name":"Infotek : Jurnal Informatika dan Teknologi","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penerapan Metode Naïve Bayes Untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP).\",\"authors\":\"A. Nur, N. Nurhidayati, Imam Fathurrahman\",\"doi\":\"10.29408/jit.v7i1.23995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PIP is the provision of educational cash assistance to school-aged children from underprivileged families who are marked with a smart Indonesia card (KIP). The purpose of this research is to determine the performance of the Naïve Bayes method in classifying data on students who are eligible and who are not eligible to receive a PIP scholarship at SMAN 1 Sukamulia, because this school is still experiencing problems in the decision-making process for determining potential PIP scholarship recipients, because there are no a system that can assist in processing student data that is eligible and not eligible to get the PIP scholarship. Therefore, for data processing, researchers tried to implement a new system with the Data Mining concept using the Naïve Bayes method, by carrying out 9 tests using Cross Validation starting from K-Fold Validation 2 to 10, obtaining the highest accuracy results in the 9th test. using K-Fold Validation 10 which is equal to 92.81%. Also obtained was an Area Under Curve (AUC) value of 0.973%, where AUC is a parameter used in classification analysis to determine the best model for predicting a class or attribute. AUC itself has a value range of 0-1, which means that the closer the AUC value is to 1, the better the prediction or diagnosis of the attribute\",\"PeriodicalId\":13567,\"journal\":{\"name\":\"Infotek : Jurnal Informatika dan Teknologi\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infotek : Jurnal Informatika dan Teknologi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29408/jit.v7i1.23995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotek : Jurnal Informatika dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/jit.v7i1.23995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PIP 是指向来自贫困家庭并持有印尼智能卡(KIP)的学龄儿童提供教育现金补助。本研究的目的是确定奈维贝叶斯方法在对 SMAN 1 Sukamulia 符合和不符合 PIP 奖学金领取条件的学生数据进行分类时的性能,因为这所学校在确定潜在 PIP 奖学金领取者的决策过程中仍然遇到问题,因为没有一个系统可以协助处理符合和不符合 PIP 奖学金领取条件的学生数据。因此,在数据处理方面,研究人员尝试使用奈伊夫贝叶斯方法,利用数据挖掘概念实施一个新系统,从 K-Fold Validation 2 到 10 开始,使用交叉验证进行了 9 次测试,在第 9 次测试中使用 K-Fold Validation 10 获得了最高的准确率,相当于 92.81%。此外,曲线下面积(AUC)值为 0.973%,AUC 是分类分析中的一个参数,用于确定预测类别或属性的最佳模型。AUC 本身的取值范围为 0-1,这意味着 AUC 值越接近 1,属性的预测或诊断效果就越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penerapan Metode Naïve Bayes Untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP).
PIP is the provision of educational cash assistance to school-aged children from underprivileged families who are marked with a smart Indonesia card (KIP). The purpose of this research is to determine the performance of the Naïve Bayes method in classifying data on students who are eligible and who are not eligible to receive a PIP scholarship at SMAN 1 Sukamulia, because this school is still experiencing problems in the decision-making process for determining potential PIP scholarship recipients, because there are no a system that can assist in processing student data that is eligible and not eligible to get the PIP scholarship. Therefore, for data processing, researchers tried to implement a new system with the Data Mining concept using the Naïve Bayes method, by carrying out 9 tests using Cross Validation starting from K-Fold Validation 2 to 10, obtaining the highest accuracy results in the 9th test. using K-Fold Validation 10 which is equal to 92.81%. Also obtained was an Area Under Curve (AUC) value of 0.973%, where AUC is a parameter used in classification analysis to determine the best model for predicting a class or attribute. AUC itself has a value range of 0-1, which means that the closer the AUC value is to 1, the better the prediction or diagnosis of the attribute
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Sistem Informasi Geografis Dalam Pemetaan Toko Oleh - Oleh Khas Lombok Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke Penerapan Metode Waterfall dalam Pengembangan Aplikasi Schedule Maintenance Alat Produksi Perancangan Sistem Informasi Absensi Menggunakan Metode QR Code Berbasis Android Aplikasi IT Support Work Orders Berbasis Web Dalam Rangka Menuju Sidoarjo Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1