Caixia Liu , Yong Chen , Renzong Xu , Haijun Ruan , Cong Wang , Xiaoyu Li
{"title":"通过改进的分层模型预测控制,在考虑燃料电池退化的情况下实现能源管理和生态驾驶的协同优化","authors":"Caixia Liu , Yong Chen , Renzong Xu , Haijun Ruan , Cong Wang , Xiaoyu Li","doi":"10.1016/j.geits.2024.100176","DOIUrl":null,"url":null,"abstract":"<div><div>An advanced eco-driving technology is widely recognized as having enormous potential to reduce the vehicle fuel consumption. However, most research on eco-driving focuses on the stability and safety for vehicle operating while disregarding its comfort and economy. To meet the requirements for safety and comfort, at the same time, enhance the economic performance of the vehicles, an improved hierarchical model predictive control cooperative optimization strategy is proposed for fuel cell hybrid electric vehicle with car-following scenario. Specifically, the upper-level model predictive controller controls the velocity, inter-vehicle distance and acceleration to guarantee safety and comfort for driving. According to the velocity information obtained from the upper model predictive controller, the lower-level improved model predictive controller considers the impact of disturbance changes on vehicle economy and aims to minimize the vehicle operating cost considering fuel cell degradation, so as to allocate energy rationally. Finally, the enhancement of economic performance of proposed strategy is verified with the results of comparative study that 3.09 % economic improvement on the premise of assuring safety and comfort of driving.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"3 6","pages":"Article 100176"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-optimization of energy management and eco-driving considering fuel cell degradation via improved hierarchical model predictive control\",\"authors\":\"Caixia Liu , Yong Chen , Renzong Xu , Haijun Ruan , Cong Wang , Xiaoyu Li\",\"doi\":\"10.1016/j.geits.2024.100176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An advanced eco-driving technology is widely recognized as having enormous potential to reduce the vehicle fuel consumption. However, most research on eco-driving focuses on the stability and safety for vehicle operating while disregarding its comfort and economy. To meet the requirements for safety and comfort, at the same time, enhance the economic performance of the vehicles, an improved hierarchical model predictive control cooperative optimization strategy is proposed for fuel cell hybrid electric vehicle with car-following scenario. Specifically, the upper-level model predictive controller controls the velocity, inter-vehicle distance and acceleration to guarantee safety and comfort for driving. According to the velocity information obtained from the upper model predictive controller, the lower-level improved model predictive controller considers the impact of disturbance changes on vehicle economy and aims to minimize the vehicle operating cost considering fuel cell degradation, so as to allocate energy rationally. Finally, the enhancement of economic performance of proposed strategy is verified with the results of comparative study that 3.09 % economic improvement on the premise of assuring safety and comfort of driving.</div></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"3 6\",\"pages\":\"Article 100176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-optimization of energy management and eco-driving considering fuel cell degradation via improved hierarchical model predictive control
An advanced eco-driving technology is widely recognized as having enormous potential to reduce the vehicle fuel consumption. However, most research on eco-driving focuses on the stability and safety for vehicle operating while disregarding its comfort and economy. To meet the requirements for safety and comfort, at the same time, enhance the economic performance of the vehicles, an improved hierarchical model predictive control cooperative optimization strategy is proposed for fuel cell hybrid electric vehicle with car-following scenario. Specifically, the upper-level model predictive controller controls the velocity, inter-vehicle distance and acceleration to guarantee safety and comfort for driving. According to the velocity information obtained from the upper model predictive controller, the lower-level improved model predictive controller considers the impact of disturbance changes on vehicle economy and aims to minimize the vehicle operating cost considering fuel cell degradation, so as to allocate energy rationally. Finally, the enhancement of economic performance of proposed strategy is verified with the results of comparative study that 3.09 % economic improvement on the premise of assuring safety and comfort of driving.