利用 EEGformer 减少穿戴式癫痫发作检测中的误报:适用于微控制器的紧凑型变压器模型

Paola Busia;Andrea Cossettini;Thorir Mar Ingolfsson;Simone Benatti;Alessio Burrello;Victor J. B. Jung;Moritz Scherer;Matteo A. Scrugli;Adriano Bernini;Pauline Ducouret;Philippe Ryvlin;Paolo Meloni;Luca Benini
{"title":"利用 EEGformer 减少穿戴式癫痫发作检测中的误报:适用于微控制器的紧凑型变压器模型","authors":"Paola Busia;Andrea Cossettini;Thorir Mar Ingolfsson;Simone Benatti;Alessio Burrello;Victor J. B. Jung;Moritz Scherer;Matteo A. Scrugli;Adriano Bernini;Pauline Ducouret;Philippe Ryvlin;Paolo Meloni;Luca Benini","doi":"10.1109/TBCAS.2024.3357509","DOIUrl":null,"url":null,"abstract":"The long-term, continuous analysis of electroencephalography (EEG) signals on wearable devices to automatically detect seizures in epileptic patients is a high-potential application field for deep neural networks, and specifically for transformers, which are highly suited for end-to-end time series processing without handcrafted feature extraction. In this work, we propose a small-scale transformer detector, the EEGformer, compatible with unobtrusive acquisition setups that use only the temporal channels. EEGformer is the result of a hardware-oriented design exploration, aiming for efficient execution on tiny low-power micro-controller units (MCUs) and low latency and false alarm rate to increase patient and caregiver acceptance.Tests conducted on the CHB-MIT dataset show a 20% reduction of the onset detection latency with respect to the state-of-the-art model for temporal acquisition, with a competitive 73% seizure detection probability and 0.15 false-positive-per-hour (FP/h). Further investigations on a novel and challenging scalp EEG dataset result in the successful detection of 88% of the annotated seizure events, with 0.45 FP/h.We evaluate the deployment of the EEGformer on three commercial low-power computing platforms: the single-core Apollo4 MCU and the GAP8 and GAP9 parallel MCUs. The most efficient implementation (on GAP9) results in as low as 13.7 ms and 0.31 mJ per inference, demonstrating the feasibility of deploying the EEGformer on wearable seizure detection systems with reduced channel count and multi-day battery duration.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10412626","citationCount":"0","resultStr":"{\"title\":\"Reducing False Alarms in Wearable Seizure Detection With EEGformer: A Compact Transformer Model for MCUs\",\"authors\":\"Paola Busia;Andrea Cossettini;Thorir Mar Ingolfsson;Simone Benatti;Alessio Burrello;Victor J. B. Jung;Moritz Scherer;Matteo A. Scrugli;Adriano Bernini;Pauline Ducouret;Philippe Ryvlin;Paolo Meloni;Luca Benini\",\"doi\":\"10.1109/TBCAS.2024.3357509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long-term, continuous analysis of electroencephalography (EEG) signals on wearable devices to automatically detect seizures in epileptic patients is a high-potential application field for deep neural networks, and specifically for transformers, which are highly suited for end-to-end time series processing without handcrafted feature extraction. In this work, we propose a small-scale transformer detector, the EEGformer, compatible with unobtrusive acquisition setups that use only the temporal channels. EEGformer is the result of a hardware-oriented design exploration, aiming for efficient execution on tiny low-power micro-controller units (MCUs) and low latency and false alarm rate to increase patient and caregiver acceptance.Tests conducted on the CHB-MIT dataset show a 20% reduction of the onset detection latency with respect to the state-of-the-art model for temporal acquisition, with a competitive 73% seizure detection probability and 0.15 false-positive-per-hour (FP/h). Further investigations on a novel and challenging scalp EEG dataset result in the successful detection of 88% of the annotated seizure events, with 0.45 FP/h.We evaluate the deployment of the EEGformer on three commercial low-power computing platforms: the single-core Apollo4 MCU and the GAP8 and GAP9 parallel MCUs. The most efficient implementation (on GAP9) results in as low as 13.7 ms and 0.31 mJ per inference, demonstrating the feasibility of deploying the EEGformer on wearable seizure detection systems with reduced channel count and multi-day battery duration.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10412626\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10412626/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10412626/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对可穿戴设备上的脑电图(EEG)信号进行长期、连续的分析,以自动检测癫痫患者的癫痫发作,是深度神经网络,特别是变换器的一个极具潜力的应用领域。在这项工作中,我们提出了一种小型变压器检测器--EEGformer,它与只使用时间通道的非侵入式采集设置兼容。EEGformer 是以硬件为导向的设计探索的成果,其目标是在微型低功耗微控制器(MCU)上高效执行、低延迟和低误报率,以提高患者和护理人员的接受度。在 CHB-MIT 数据集上进行的测试表明,与最先进的时间采集模型相比,发病检测延迟时间缩短了 20%,癫痫发作检测概率为 73%,误报率为 0.15。通过对新颖且具有挑战性的头皮脑电图数据集进行进一步研究,我们成功检测出 88% 的注释癫痫发作事件,假阳性率为 0.45FP/h。我们评估了 EEGformer 在三种商用低功耗计算平台上的部署情况:单核 Apollo4 MCU 以及 GAP8 和 GAP9 并行 MCU。最高效的实现(在 GAP9 上)每次推理的时间和能量分别低至 13.7 毫秒和 0.31 毫焦,这证明了将 EEGformer 部署到通道数更少、电池持续时间更长的可穿戴癫痫发作检测系统上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing False Alarms in Wearable Seizure Detection With EEGformer: A Compact Transformer Model for MCUs
The long-term, continuous analysis of electroencephalography (EEG) signals on wearable devices to automatically detect seizures in epileptic patients is a high-potential application field for deep neural networks, and specifically for transformers, which are highly suited for end-to-end time series processing without handcrafted feature extraction. In this work, we propose a small-scale transformer detector, the EEGformer, compatible with unobtrusive acquisition setups that use only the temporal channels. EEGformer is the result of a hardware-oriented design exploration, aiming for efficient execution on tiny low-power micro-controller units (MCUs) and low latency and false alarm rate to increase patient and caregiver acceptance.Tests conducted on the CHB-MIT dataset show a 20% reduction of the onset detection latency with respect to the state-of-the-art model for temporal acquisition, with a competitive 73% seizure detection probability and 0.15 false-positive-per-hour (FP/h). Further investigations on a novel and challenging scalp EEG dataset result in the successful detection of 88% of the annotated seizure events, with 0.45 FP/h.We evaluate the deployment of the EEGformer on three commercial low-power computing platforms: the single-core Apollo4 MCU and the GAP8 and GAP9 parallel MCUs. The most efficient implementation (on GAP9) results in as low as 13.7 ms and 0.31 mJ per inference, demonstrating the feasibility of deploying the EEGformer on wearable seizure detection systems with reduced channel count and multi-day battery duration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Integrated Dual-Mode Pulse and Continuous-Wave Electron Paramagnetic Resonance Spectrometers. NEXUS: A 28nm 3.3pJ/SOP 16-Core Spiking Neural Network with a Diamond Topology for Real-Time Data Processing. An Electrochemical CMOS Biosensor Array Using Phase-Only Modulation With 0.035% Phase Error And In-Pixel Averaging. GCOC: A Genome Classifier-On-Chip based on Similarity Search Content Addressable Memory. Low-Power and Low-Cost AI Processor with Distributed-Aggregated Classification Architecture for Wearable Epilepsy Seizure Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1