预测气候变暖条件下陆地和海洋的全球生物 N2 固定量。

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Microbiology Pub Date : 2024-06-01 Epub Date: 2024-01-22 DOI:10.1016/j.tim.2023.12.007
Curtis Deutsch, Keisuke Inomura, Ya-Wei Luo, Ying-Ping Wang
{"title":"预测气候变暖条件下陆地和海洋的全球生物 N2 固定量。","authors":"Curtis Deutsch, Keisuke Inomura, Ya-Wei Luo, Ying-Ping Wang","doi":"10.1016/j.tim.2023.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Biological N<sub>2</sub> fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N<sub>2</sub> fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N<sub>2</sub> fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N<sub>2</sub> fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N<sub>2</sub> fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N<sub>2</sub> fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projecting global biological N<sub>2</sub> fixation under climate warming across land and ocean.\",\"authors\":\"Curtis Deutsch, Keisuke Inomura, Ya-Wei Luo, Ying-Ping Wang\",\"doi\":\"10.1016/j.tim.2023.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological N<sub>2</sub> fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N<sub>2</sub> fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N<sub>2</sub> fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N<sub>2</sub> fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N<sub>2</sub> fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N<sub>2</sub> fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2023.12.007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2023.12.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物固氮维持着陆地和海洋生态系统生产力所必需的全球氮营养物质库存。与大多数新陈代谢过程一样,生物固氮的速率随温度的变化而变化,因此对气候变化非常敏感,但目前还缺乏对陆地和海洋的全球预测。在这里,我们通过对野外和实验室测量数据的汇编,揭示了氮固定率与温度之间的关系,尽管在分类学和环境方面存在巨大差异,但这两个领域的氮固定率与温度之间的关系是相似的。N2固定率在约25°C时逐渐升高到最佳温度,在达到最高温度时则迅速下降,海洋中的最高温度低于陆地。在这两个领域中,观测到的温度敏感性意味着,本世纪气候变暖可能会使热带地区的氮固定率下降约 50%,而使高纬度地区的氮固定率上升约 50%。我们提出了一个概念框架,用于理解支撑和调节所观测到的全球 N2 固定率的温度依赖性的生理和生态机制,促进海洋和陆地研究的交叉融合,以评估其对气候变化的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Projecting global biological N2 fixation under climate warming across land and ocean.

Biological N2 fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N2 fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N2 fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N2 fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N2 fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N2 fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
期刊最新文献
Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Neutrophils - an understudied bystander in dengue? C4 cereal and biofuel crop microbiomes. Linking microbiome temporal dynamics to host ecology in the wild.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1