基于 ADOPT 算法的终止和最优性的反例和修正

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Pub Date : 2024-01-24 DOI:10.1016/j.artint.2024.104083
Koji Noshiro , Koji Hasebe
{"title":"基于 ADOPT 算法的终止和最优性的反例和修正","authors":"Koji Noshiro ,&nbsp;Koji Hasebe","doi":"10.1016/j.artint.2024.104083","DOIUrl":null,"url":null,"abstract":"<div><p>A distributed constraint optimization problem (DCOP) is a framework to model multi-agent coordination problems. Asynchronous distributed optimization (ADOPT) is a well-known complete DCOP algorithm, and many of its variants have been proposed over the last decade. It is considered proven that ADOPT-based algorithms have the key properties of termination and optimality, which guarantee that the algorithms terminate in a finite time and obtain an optimal solution, respectively. In this paper, we present counterexamples to the termination and optimality of ADOPT-based algorithms. They are classified into three types, at least one of which exists in each of ADOPT and eight of its variants that we analyzed. In other words, the algorithms may potentially not terminate or terminate with a suboptimal solution. Furthermore, we show that the bounded-error approximation of ADOPT, which enables the algorithm to terminate faster with the quality of the solution guaranteed within a predefined error bound, also suffers from flaws. Additionally, we propose an amended version of ADOPT that avoids the flaws in existing algorithms and prove that it has the properties of termination and optimality.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"329 ","pages":"Article 104083"},"PeriodicalIF":5.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterexamples and amendments to the termination and optimality of ADOPT-based algorithms\",\"authors\":\"Koji Noshiro ,&nbsp;Koji Hasebe\",\"doi\":\"10.1016/j.artint.2024.104083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A distributed constraint optimization problem (DCOP) is a framework to model multi-agent coordination problems. Asynchronous distributed optimization (ADOPT) is a well-known complete DCOP algorithm, and many of its variants have been proposed over the last decade. It is considered proven that ADOPT-based algorithms have the key properties of termination and optimality, which guarantee that the algorithms terminate in a finite time and obtain an optimal solution, respectively. In this paper, we present counterexamples to the termination and optimality of ADOPT-based algorithms. They are classified into three types, at least one of which exists in each of ADOPT and eight of its variants that we analyzed. In other words, the algorithms may potentially not terminate or terminate with a suboptimal solution. Furthermore, we show that the bounded-error approximation of ADOPT, which enables the algorithm to terminate faster with the quality of the solution guaranteed within a predefined error bound, also suffers from flaws. Additionally, we propose an amended version of ADOPT that avoids the flaws in existing algorithms and prove that it has the properties of termination and optimality.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"329 \",\"pages\":\"Article 104083\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224000195\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000195","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

分布式约束优化问题(DCOP)是多代理协调问题的建模框架。异步分布式优化(ADOPT)是一种著名的完整 DCOP 算法,在过去的十年中,人们提出了它的许多变体。人们认为,基于 ADOPT 的算法具有终止和最优的关键特性,这两个特性分别保证了算法在有限时间内终止和获得最优解。本文提出了基于 ADOPT 算法的终止性和最优性的反例。这些反例分为三类,在我们分析的 ADOPT 及其八个变体中,每一种都至少存在一个。换句话说,这些算法可能不会终止或以次优解终止。此外,我们还发现,ADOPT 的有界误差近似算法也存在缺陷,它能使算法在保证解的质量在预定误差范围内的情况下更快地终止。此外,我们还提出了 ADOPT 的修正版,以避免现有算法的缺陷,并证明它具有终止和最优性的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Counterexamples and amendments to the termination and optimality of ADOPT-based algorithms

A distributed constraint optimization problem (DCOP) is a framework to model multi-agent coordination problems. Asynchronous distributed optimization (ADOPT) is a well-known complete DCOP algorithm, and many of its variants have been proposed over the last decade. It is considered proven that ADOPT-based algorithms have the key properties of termination and optimality, which guarantee that the algorithms terminate in a finite time and obtain an optimal solution, respectively. In this paper, we present counterexamples to the termination and optimality of ADOPT-based algorithms. They are classified into three types, at least one of which exists in each of ADOPT and eight of its variants that we analyzed. In other words, the algorithms may potentially not terminate or terminate with a suboptimal solution. Furthermore, we show that the bounded-error approximation of ADOPT, which enables the algorithm to terminate faster with the quality of the solution guaranteed within a predefined error bound, also suffers from flaws. Additionally, we propose an amended version of ADOPT that avoids the flaws in existing algorithms and prove that it has the properties of termination and optimality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
期刊最新文献
Lifted action models learning from partial traces Human-AI coevolution Editorial Board Separate but equal: Equality in belief propagation for single-cycle graphs Generative models for grid-based and image-based pathfinding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1