B. Thetaiotaomicron衍生的乙酸调节肝细胞癌的免疫微环境和肿瘤生长。

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Gut Microbes Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI:10.1080/19490976.2023.2297846
Hongbin Ma, Liang Yang, Yingchao Liang, Fenghua Liu, Jinxiang Hu, Rui Zhang, Yong Li, Lei Yuan, Feiling Feng
{"title":"B. Thetaiotaomicron衍生的乙酸调节肝细胞癌的免疫微环境和肿瘤生长。","authors":"Hongbin Ma, Liang Yang, Yingchao Liang, Fenghua Liu, Jinxiang Hu, Rui Zhang, Yong Li, Lei Yuan, Feiling Feng","doi":"10.1080/19490976.2023.2297846","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and emerging evidence suggests that the gut microbiota may play a role in its development and progression. In this study, the association between <i>B. thetaiotaomicron</i>, a gut microbiota species, and HCC recurrence, as well as patient clinical outcomes, was investigated. It was observed that <i>B. thetaiotaomicron</i>-derived acetic acid has the potential to modulate the polarization of <b>pro-pro-inflammatory macrophagess</b>, which promotes the function of cytotoxic CD8+ T cells. The increased biosynthesis of fatty acids was implicated in the modulation of <b>pro-inflammatory macrophages</b> polarization by <i>B. thetaiotaomicron</i>-derived acetic acid. Furthermore, <i>B. thetaiotaomicron</i>-derived acetic acid was found to facilitate the transcription of ACC1, a key enzyme involved in fatty acid biosynthesis, through histone acetylation modification in the ACC1 promoter region. Curcumin, an acetylation modification inhibitor, significantly blocked the inhibitory effects of <i>B. thetaiotaomicron</i> and acetic acid on HCC tumor growth. These findings highlight the potential role of gut microbiota-derived acetic acid in HCC recurrence and patient clinical outcomes, and suggest a complex interplay between gut microbiota, immune modulation, fatty acid metabolism, and epigenetic regulation in the context of HCC development. Further research in this area may provide insights into novel strategies for HCC prevention and treatment by targeting the gut microbiota and its metabolites.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813637/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>B. thetaiotaomicron</i>-derived acetic acid modulate immune microenvironment and tumor growth in hepatocellular carcinoma.\",\"authors\":\"Hongbin Ma, Liang Yang, Yingchao Liang, Fenghua Liu, Jinxiang Hu, Rui Zhang, Yong Li, Lei Yuan, Feiling Feng\",\"doi\":\"10.1080/19490976.2023.2297846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and emerging evidence suggests that the gut microbiota may play a role in its development and progression. In this study, the association between <i>B. thetaiotaomicron</i>, a gut microbiota species, and HCC recurrence, as well as patient clinical outcomes, was investigated. It was observed that <i>B. thetaiotaomicron</i>-derived acetic acid has the potential to modulate the polarization of <b>pro-pro-inflammatory macrophagess</b>, which promotes the function of cytotoxic CD8+ T cells. The increased biosynthesis of fatty acids was implicated in the modulation of <b>pro-inflammatory macrophages</b> polarization by <i>B. thetaiotaomicron</i>-derived acetic acid. Furthermore, <i>B. thetaiotaomicron</i>-derived acetic acid was found to facilitate the transcription of ACC1, a key enzyme involved in fatty acid biosynthesis, through histone acetylation modification in the ACC1 promoter region. Curcumin, an acetylation modification inhibitor, significantly blocked the inhibitory effects of <i>B. thetaiotaomicron</i> and acetic acid on HCC tumor growth. These findings highlight the potential role of gut microbiota-derived acetic acid in HCC recurrence and patient clinical outcomes, and suggest a complex interplay between gut microbiota, immune modulation, fatty acid metabolism, and epigenetic regulation in the context of HCC development. Further research in this area may provide insights into novel strategies for HCC prevention and treatment by targeting the gut microbiota and its metabolites.</p>\",\"PeriodicalId\":12909,\"journal\":{\"name\":\"Gut Microbes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19490976.2023.2297846\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2023.2297846","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是全球癌症相关死亡的主要原因之一,而新出现的证据表明,肠道微生物群可能在其发展和恶化过程中起着一定的作用。本研究调查了肠道微生物群物种 B. thetaiotaomicron 与 HCC 复发以及患者临床预后之间的关系。研究发现,B. thetaiotaomicron 衍生的乙酸有可能调节促炎症巨噬细胞的极化,从而促进细胞毒性 CD8+ T 细胞的功能。脂肪酸生物合成的增加与泰妙菌素衍生乙酸对促炎巨噬细胞极化的调节有关。此外,研究还发现源于B. Thetaiotaomicron的乙酸可通过ACC1启动子区域的组蛋白乙酰化修饰促进参与脂肪酸生物合成的关键酶ACC1的转录。姜黄素是一种乙酰化修饰抑制剂,它能明显阻断B. thetaiotaomicron和乙酸对HCC肿瘤生长的抑制作用。这些发现凸显了肠道微生物群衍生的乙酸在 HCC 复发和患者临床预后中的潜在作用,并表明在 HCC 的发展过程中,肠道微生物群、免疫调节、脂肪酸代谢和表观遗传调控之间存在着复杂的相互作用。该领域的进一步研究可能会为针对肠道微生物群及其代谢产物的新型 HCC 预防和治疗策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B. thetaiotaomicron-derived acetic acid modulate immune microenvironment and tumor growth in hepatocellular carcinoma.

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and emerging evidence suggests that the gut microbiota may play a role in its development and progression. In this study, the association between B. thetaiotaomicron, a gut microbiota species, and HCC recurrence, as well as patient clinical outcomes, was investigated. It was observed that B. thetaiotaomicron-derived acetic acid has the potential to modulate the polarization of pro-pro-inflammatory macrophagess, which promotes the function of cytotoxic CD8+ T cells. The increased biosynthesis of fatty acids was implicated in the modulation of pro-inflammatory macrophages polarization by B. thetaiotaomicron-derived acetic acid. Furthermore, B. thetaiotaomicron-derived acetic acid was found to facilitate the transcription of ACC1, a key enzyme involved in fatty acid biosynthesis, through histone acetylation modification in the ACC1 promoter region. Curcumin, an acetylation modification inhibitor, significantly blocked the inhibitory effects of B. thetaiotaomicron and acetic acid on HCC tumor growth. These findings highlight the potential role of gut microbiota-derived acetic acid in HCC recurrence and patient clinical outcomes, and suggest a complex interplay between gut microbiota, immune modulation, fatty acid metabolism, and epigenetic regulation in the context of HCC development. Further research in this area may provide insights into novel strategies for HCC prevention and treatment by targeting the gut microbiota and its metabolites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
期刊最新文献
Candida tropicalis-derived vitamin B3 exerts protective effects against intestinal inflammation by promoting IL-17A/IL-22-dependent epithelial barrier function The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Morphine-induced intestinal microbial dysbiosis drives TLR-dependent IgA targeting of gram-positive bacteria and upregulation of CD11b and TLR2 on a sub-population of IgA+ B cells. Muropeptides and muropeptide transporters impact on host immune response. Fecal samples and rectal swabs adequately reflect the human colonic luminal microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1