Kieron Moller, A. Pouyan Nejadhashemi, Muhammad Talha, Mervis Chikafa, Rasu Eeswaran, Nilson Vieira Junior, Ana Julia Paula Carcedo, Ignacio Ciampitti, Jean-Claude Bizimana, Amadiane Diallo, P. V. Vara Prasad
{"title":"揭示塞内加尔小农在极端气候条件下的恢复能力","authors":"Kieron Moller, A. Pouyan Nejadhashemi, Muhammad Talha, Mervis Chikafa, Rasu Eeswaran, Nilson Vieira Junior, Ana Julia Paula Carcedo, Ignacio Ciampitti, Jean-Claude Bizimana, Amadiane Diallo, P. V. Vara Prasad","doi":"10.1002/fes3.523","DOIUrl":null,"url":null,"abstract":"<p>In Senegal, agriculture is an important sector underpinning the socioeconomic fabric of the populace. Notably, the agricultural production in this region exhibits heightened sensitivity to climatic perturbations, particularly droughts and heat waves. This study aims to determine the resilience of different agronomic interventions for farmers practicing mixed farming that produce both crops (i.e., groundnut (<i>Arachis hypogaea</i> L.) and pearl millet (<i>Pennisetum glaucum</i> (L.) R. Br.)) and raise animals in the Groundnut Basin in Senegal, which holds historical and socioeconomic significance. To understand the current situation regarding demographics, economics, consumption behavior, and farm operations for smallholder farmers, data were comprehensively collected from government and nongovernment organizations (NGO) reports, scientific papers, organization databases, and surveys. Additionally, the Agricultural Production Systems sIMulator (APSIM) was used to understand how combinations of three planting dates, three plant densities, and six urea nitrogen (N) fertilizer rates affected the yield of pearl millet, which were used as the alternative scenarios to the baseline in the farm modeling and analyses. All the collected and generated data were used as inputs into the Farm Simulation Model (FARMSIM) to generate economic, nutritional, and risk data associated with mixed farming systems. The generated data were then used to determine the resilience of the alternative scenarios against the baseline. Initially, a multi-objective optimization was employed to meet nutritional needs while maintaining a healthy diet at the lowest cost. Then, the scenarios that met the population's nutritional requirements were evaluated based on four economic indicators: net cash farm income (NCFI), ending cash reserves (EC), net present value (NPV), and internal rate of return (IRR). Lastly, those that passed the economic feasibility test were ranked based on risk criteria certainty equivalent (CE) and risk premium (RP). The analyses found N fertilizer rates of 0, 20, and 100 kg N ha<sup>−1</sup> were generally economically not feasible. Additionally, medium (early-July to late-August) and late (late-July to mid-September) planting dates generally performed better than early (early-June to late-July) planting dates, while plant densities of 3.3 and 6.6 pL m<sup>−2</sup> performed better than 1.1. The robust resilience approach introduced in this study is easily transferable to other regions.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.523","citationCount":"0","resultStr":"{\"title\":\"Unveiling the resilience of smallholder farmers in Senegal amidst extreme climate conditions\",\"authors\":\"Kieron Moller, A. Pouyan Nejadhashemi, Muhammad Talha, Mervis Chikafa, Rasu Eeswaran, Nilson Vieira Junior, Ana Julia Paula Carcedo, Ignacio Ciampitti, Jean-Claude Bizimana, Amadiane Diallo, P. V. Vara Prasad\",\"doi\":\"10.1002/fes3.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Senegal, agriculture is an important sector underpinning the socioeconomic fabric of the populace. Notably, the agricultural production in this region exhibits heightened sensitivity to climatic perturbations, particularly droughts and heat waves. This study aims to determine the resilience of different agronomic interventions for farmers practicing mixed farming that produce both crops (i.e., groundnut (<i>Arachis hypogaea</i> L.) and pearl millet (<i>Pennisetum glaucum</i> (L.) R. Br.)) and raise animals in the Groundnut Basin in Senegal, which holds historical and socioeconomic significance. To understand the current situation regarding demographics, economics, consumption behavior, and farm operations for smallholder farmers, data were comprehensively collected from government and nongovernment organizations (NGO) reports, scientific papers, organization databases, and surveys. Additionally, the Agricultural Production Systems sIMulator (APSIM) was used to understand how combinations of three planting dates, three plant densities, and six urea nitrogen (N) fertilizer rates affected the yield of pearl millet, which were used as the alternative scenarios to the baseline in the farm modeling and analyses. All the collected and generated data were used as inputs into the Farm Simulation Model (FARMSIM) to generate economic, nutritional, and risk data associated with mixed farming systems. The generated data were then used to determine the resilience of the alternative scenarios against the baseline. Initially, a multi-objective optimization was employed to meet nutritional needs while maintaining a healthy diet at the lowest cost. Then, the scenarios that met the population's nutritional requirements were evaluated based on four economic indicators: net cash farm income (NCFI), ending cash reserves (EC), net present value (NPV), and internal rate of return (IRR). Lastly, those that passed the economic feasibility test were ranked based on risk criteria certainty equivalent (CE) and risk premium (RP). The analyses found N fertilizer rates of 0, 20, and 100 kg N ha<sup>−1</sup> were generally economically not feasible. Additionally, medium (early-July to late-August) and late (late-July to mid-September) planting dates generally performed better than early (early-June to late-July) planting dates, while plant densities of 3.3 and 6.6 pL m<sup>−2</sup> performed better than 1.1. The robust resilience approach introduced in this study is easily transferable to other regions.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.523\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.523\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.523","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Unveiling the resilience of smallholder farmers in Senegal amidst extreme climate conditions
In Senegal, agriculture is an important sector underpinning the socioeconomic fabric of the populace. Notably, the agricultural production in this region exhibits heightened sensitivity to climatic perturbations, particularly droughts and heat waves. This study aims to determine the resilience of different agronomic interventions for farmers practicing mixed farming that produce both crops (i.e., groundnut (Arachis hypogaea L.) and pearl millet (Pennisetum glaucum (L.) R. Br.)) and raise animals in the Groundnut Basin in Senegal, which holds historical and socioeconomic significance. To understand the current situation regarding demographics, economics, consumption behavior, and farm operations for smallholder farmers, data were comprehensively collected from government and nongovernment organizations (NGO) reports, scientific papers, organization databases, and surveys. Additionally, the Agricultural Production Systems sIMulator (APSIM) was used to understand how combinations of three planting dates, three plant densities, and six urea nitrogen (N) fertilizer rates affected the yield of pearl millet, which were used as the alternative scenarios to the baseline in the farm modeling and analyses. All the collected and generated data were used as inputs into the Farm Simulation Model (FARMSIM) to generate economic, nutritional, and risk data associated with mixed farming systems. The generated data were then used to determine the resilience of the alternative scenarios against the baseline. Initially, a multi-objective optimization was employed to meet nutritional needs while maintaining a healthy diet at the lowest cost. Then, the scenarios that met the population's nutritional requirements were evaluated based on four economic indicators: net cash farm income (NCFI), ending cash reserves (EC), net present value (NPV), and internal rate of return (IRR). Lastly, those that passed the economic feasibility test were ranked based on risk criteria certainty equivalent (CE) and risk premium (RP). The analyses found N fertilizer rates of 0, 20, and 100 kg N ha−1 were generally economically not feasible. Additionally, medium (early-July to late-August) and late (late-July to mid-September) planting dates generally performed better than early (early-June to late-July) planting dates, while plant densities of 3.3 and 6.6 pL m−2 performed better than 1.1. The robust resilience approach introduced in this study is easily transferable to other regions.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology