结合铜改性氮化硼和石墨烯自组装三维导热框架以改善环氧树脂的导热性能

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Applied Composite Materials Pub Date : 2024-01-22 DOI:10.1007/s10443-023-10195-9
Shuo Li, Wei Wu, Dietmar Drummer, Florian Tomiak, Yi Wang, Zijian Lu, Xintong Zhao
{"title":"结合铜改性氮化硼和石墨烯自组装三维导热框架以改善环氧树脂的导热性能","authors":"Shuo Li,&nbsp;Wei Wu,&nbsp;Dietmar Drummer,&nbsp;Florian Tomiak,&nbsp;Yi Wang,&nbsp;Zijian Lu,&nbsp;Xintong Zhao","doi":"10.1007/s10443-023-10195-9","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of integrated circuits and the miniaturization/ integration of electronic devices, heat dissipation solutions have become an increasingly important issue. The thermal conductivity of polymer-based thermal management materials is typically influenced by the amount of incorporated fillers. However, an innovative solution to increase the thermal conductivity without increasing the total filler content is the improvement of the filler connectivity by using specific surface modifications. Surface modifications using thermal conductive submicron particles can reduce the interfiller distances, acting as thermal bridges between the particles. In this paper, copper submicron particles modified BN (BN@CuSMPs) have been prepared by in situ reduction and mixed with graphene oxide (GO). A three-dimensional BN@CuSMPs/rGO aerogel (CBGA) framework with \"point-surface\" connection has been prepared by using the self-assembly mode of GO. CBGA/EP composites were then prepared using epoxy resin (EP) as matrix and a vacuum assisted impregnation method. The thermal conductivity of CBGA/EP composites has been found to be 1.918 W m<sup>−1</sup> K<sup>−1</sup> using a filler content of 19.61%, which was 12.8% higher than that of BN/rGO/EP composites and 909.5% higher than that of pure EP. The thermal resistance of the composites was analyzed using the Foygel model. It was found that the introduction of CuSMPs effectively decreased the thermal resistance between the BN particles, forming a thermal conductive three dimensional network inside the polymer-based material system.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"897 - 910"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Modified Boron Nitride And Graphene Combined To Self-Assemble Three-Dimensional Thermal Conductivity Framework to Improve the Thermal Conductivity of Epoxy Resin\",\"authors\":\"Shuo Li,&nbsp;Wei Wu,&nbsp;Dietmar Drummer,&nbsp;Florian Tomiak,&nbsp;Yi Wang,&nbsp;Zijian Lu,&nbsp;Xintong Zhao\",\"doi\":\"10.1007/s10443-023-10195-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the development of integrated circuits and the miniaturization/ integration of electronic devices, heat dissipation solutions have become an increasingly important issue. The thermal conductivity of polymer-based thermal management materials is typically influenced by the amount of incorporated fillers. However, an innovative solution to increase the thermal conductivity without increasing the total filler content is the improvement of the filler connectivity by using specific surface modifications. Surface modifications using thermal conductive submicron particles can reduce the interfiller distances, acting as thermal bridges between the particles. In this paper, copper submicron particles modified BN (BN@CuSMPs) have been prepared by in situ reduction and mixed with graphene oxide (GO). A three-dimensional BN@CuSMPs/rGO aerogel (CBGA) framework with \\\"point-surface\\\" connection has been prepared by using the self-assembly mode of GO. CBGA/EP composites were then prepared using epoxy resin (EP) as matrix and a vacuum assisted impregnation method. The thermal conductivity of CBGA/EP composites has been found to be 1.918 W m<sup>−1</sup> K<sup>−1</sup> using a filler content of 19.61%, which was 12.8% higher than that of BN/rGO/EP composites and 909.5% higher than that of pure EP. The thermal resistance of the composites was analyzed using the Foygel model. It was found that the introduction of CuSMPs effectively decreased the thermal resistance between the BN particles, forming a thermal conductive three dimensional network inside the polymer-based material system.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 3\",\"pages\":\"897 - 910\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-023-10195-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10195-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着集成电路的发展和电子设备的微型化/集成化,散热解决方案已成为一个日益重要的问题。聚合物热管理材料的导热性通常受填充物含量的影响。然而,在不增加填料总含量的情况下提高热导率的创新解决方案是通过使用特定的表面改性技术来改善填料的连接性。使用导热亚微米颗粒进行表面改性可以减少填料间的距离,起到颗粒间热桥的作用。本文通过原位还原法制备了铜亚微米粒子修饰 BN(BN@CuSMPs),并将其与氧化石墨烯(GO)混合。利用 GO 的自组装模式制备了具有 "点-面 "连接的三维 BN@CuSMPs/rGO 气凝胶(CBGA)框架。然后以环氧树脂(EP)为基体,采用真空辅助浸渍法制备了 CBGA/EP 复合材料。在填料含量为 19.61% 的情况下,CBGA/EP 复合材料的热导率为 1.918 W m-1 K-1,比 BN/rGO/EP 复合材料的热导率高 12.8%,比纯 EP 的热导率高 909.5%。使用 Foygel 模型分析了复合材料的热阻。结果发现,CuSMPs 的引入有效降低了 BN 颗粒之间的热阻,在聚合物基材料体系内部形成了一个导热三维网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Copper Modified Boron Nitride And Graphene Combined To Self-Assemble Three-Dimensional Thermal Conductivity Framework to Improve the Thermal Conductivity of Epoxy Resin

With the development of integrated circuits and the miniaturization/ integration of electronic devices, heat dissipation solutions have become an increasingly important issue. The thermal conductivity of polymer-based thermal management materials is typically influenced by the amount of incorporated fillers. However, an innovative solution to increase the thermal conductivity without increasing the total filler content is the improvement of the filler connectivity by using specific surface modifications. Surface modifications using thermal conductive submicron particles can reduce the interfiller distances, acting as thermal bridges between the particles. In this paper, copper submicron particles modified BN (BN@CuSMPs) have been prepared by in situ reduction and mixed with graphene oxide (GO). A three-dimensional BN@CuSMPs/rGO aerogel (CBGA) framework with "point-surface" connection has been prepared by using the self-assembly mode of GO. CBGA/EP composites were then prepared using epoxy resin (EP) as matrix and a vacuum assisted impregnation method. The thermal conductivity of CBGA/EP composites has been found to be 1.918 W m−1 K−1 using a filler content of 19.61%, which was 12.8% higher than that of BN/rGO/EP composites and 909.5% higher than that of pure EP. The thermal resistance of the composites was analyzed using the Foygel model. It was found that the introduction of CuSMPs effectively decreased the thermal resistance between the BN particles, forming a thermal conductive three dimensional network inside the polymer-based material system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
期刊最新文献
A Coupled Elastoplastic-Damage Analytical Model for 3D Resin-Matrix Woven Composites Effect of Temperature on the Mixed mode I/II Translaminar Fracture of Epoxy Composites Reinforced with Cotton Fibers Experimental Characterisation of Cure-Dependent Spring-Back Behaviour of Metal-Composite Laminates in a Hot-Pressing Process Cutting Force Model of SiCp/Al Composites in Ultrasonic Elliptical Vibration Assisted Cutting with Negative Rake Angle Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1