永生化鸡骨骼肌卫星细胞系的建立与分析1

IF 4.6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Integrative Agriculture Pub Date : 2024-01-24 DOI:10.1016/j.jia.2024.01.034
Yanxing Wang, Haigang Ji, Liyang He, Yufang Niu, Yushi Zhang, Yang Liu, Yadong Tian, Xiaojun Liu, Hong Li, Xiangtao Kang, Yanling Gao, Zhuanjian Li
{"title":"永生化鸡骨骼肌卫星细胞系的建立与分析1","authors":"Yanxing Wang, Haigang Ji, Liyang He, Yufang Niu, Yushi Zhang, Yang Liu, Yadong Tian, Xiaojun Liu, Hong Li, Xiangtao Kang, Yanling Gao, Zhuanjian Li","doi":"10.1016/j.jia.2024.01.034","DOIUrl":null,"url":null,"abstract":"<p>Skeletal muscle satellite cells are stem cells that are known for their multipotency and ability to proliferate in vitro. However, primary skeletal muscle satellite cells have limited proliferative capacity in vitro, which hinders their study in poultry skeletal muscle. The emergence of immortalization techniques for cells has provided a useful tool to overcome this limitation and explore the functions of skeletal muscle satellite cells. In this study, we achieved the immortalization of chicken skeletal muscle satellite cells by transducing primary cells with TERT (Telomerase reverse transcriptase) amplified from chicken (<em>chTERT</em>) using a lentiviral vector through reconstitution of telomerase activity. The cells successfully bypassed replicative senescence but did not achieve true immortalization. Preliminary functional characterization of the established cell line revealed that the proliferative characteristics and cell cycle profile of the immortalized chicken skeletal muscle satellite cell lines (ICMS) were similar to those of chicken primary muscle satellite cells (CPMSCs). Serum dependency analysis and soft agar assays indicated that ICMS did not undergo malignant transformation. Induced differentiation results demonstrated that ICMS retained their capacity for differentiation. The cell lines established in this study provide an important basis for the establishment of immortalized poultry cell lines and a cell model for the study of poultry skeletal muscle-related functional genes.</p>","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"195 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment and analysis of immortalized chicken skeletal muscle satellite cell lines1\",\"authors\":\"Yanxing Wang, Haigang Ji, Liyang He, Yufang Niu, Yushi Zhang, Yang Liu, Yadong Tian, Xiaojun Liu, Hong Li, Xiangtao Kang, Yanling Gao, Zhuanjian Li\",\"doi\":\"10.1016/j.jia.2024.01.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skeletal muscle satellite cells are stem cells that are known for their multipotency and ability to proliferate in vitro. However, primary skeletal muscle satellite cells have limited proliferative capacity in vitro, which hinders their study in poultry skeletal muscle. The emergence of immortalization techniques for cells has provided a useful tool to overcome this limitation and explore the functions of skeletal muscle satellite cells. In this study, we achieved the immortalization of chicken skeletal muscle satellite cells by transducing primary cells with TERT (Telomerase reverse transcriptase) amplified from chicken (<em>chTERT</em>) using a lentiviral vector through reconstitution of telomerase activity. The cells successfully bypassed replicative senescence but did not achieve true immortalization. Preliminary functional characterization of the established cell line revealed that the proliferative characteristics and cell cycle profile of the immortalized chicken skeletal muscle satellite cell lines (ICMS) were similar to those of chicken primary muscle satellite cells (CPMSCs). Serum dependency analysis and soft agar assays indicated that ICMS did not undergo malignant transformation. Induced differentiation results demonstrated that ICMS retained their capacity for differentiation. The cell lines established in this study provide an important basis for the establishment of immortalized poultry cell lines and a cell model for the study of poultry skeletal muscle-related functional genes.</p>\",\"PeriodicalId\":16305,\"journal\":{\"name\":\"Journal of Integrative Agriculture\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jia.2024.01.034\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.01.034","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌卫星细胞是一种干细胞,具有多潜能和体外增殖能力。然而,原代骨骼肌卫星细胞的体外增殖能力有限,这阻碍了对家禽骨骼肌的研究。细胞永生化技术的出现为克服这一限制和探索骨骼肌卫星细胞的功能提供了有用的工具。在本研究中,我们利用慢病毒载体,通过端粒酶活性重组,将从鸡扩增而来的TERT(端粒酶逆转录酶)(chTERT)转导原代细胞,实现了鸡骨骼肌卫星细胞的永生化。细胞成功绕过了复制衰老,但没有实现真正的永生化。对已建立的细胞系进行的初步功能表征显示,永生化的鸡骨骼肌卫星细胞系(ICMS)的增殖特性和细胞周期轮廓与鸡原代肌肉卫星细胞(CPMSCs)相似。血清依赖性分析和软琼脂试验表明,ICMS 不会发生恶性转化。诱导分化结果表明,ICMS 保留了其分化能力。本研究建立的细胞系为建立家禽永生化细胞系提供了重要依据,也为研究家禽骨骼肌相关功能基因提供了细胞模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment and analysis of immortalized chicken skeletal muscle satellite cell lines1

Skeletal muscle satellite cells are stem cells that are known for their multipotency and ability to proliferate in vitro. However, primary skeletal muscle satellite cells have limited proliferative capacity in vitro, which hinders their study in poultry skeletal muscle. The emergence of immortalization techniques for cells has provided a useful tool to overcome this limitation and explore the functions of skeletal muscle satellite cells. In this study, we achieved the immortalization of chicken skeletal muscle satellite cells by transducing primary cells with TERT (Telomerase reverse transcriptase) amplified from chicken (chTERT) using a lentiviral vector through reconstitution of telomerase activity. The cells successfully bypassed replicative senescence but did not achieve true immortalization. Preliminary functional characterization of the established cell line revealed that the proliferative characteristics and cell cycle profile of the immortalized chicken skeletal muscle satellite cell lines (ICMS) were similar to those of chicken primary muscle satellite cells (CPMSCs). Serum dependency analysis and soft agar assays indicated that ICMS did not undergo malignant transformation. Induced differentiation results demonstrated that ICMS retained their capacity for differentiation. The cell lines established in this study provide an important basis for the establishment of immortalized poultry cell lines and a cell model for the study of poultry skeletal muscle-related functional genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Agriculture
Journal of Integrative Agriculture AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
4.20%
发文量
4817
审稿时长
3-6 weeks
期刊介绍: Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.
期刊最新文献
Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions Rural labor migration and farmers’ arrangements of rice production systems in Central China: Insight from the intergenerational division of labor The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood-brain barrier permeability1 Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1